001028495 001__ 1028495
001028495 005__ 20250204113907.0
001028495 0247_ $$2doi$$a10.5194/acp-24-6047-2024
001028495 0247_ $$2ISSN$$a1680-7316
001028495 0247_ $$2ISSN$$a1680-7324
001028495 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04647
001028495 0247_ $$2WOS$$aWOS:001231115300001
001028495 037__ $$aFZJ-2024-04647
001028495 082__ $$a550
001028495 1001_ $$0P:(DE-HGF)0$$aMa, Jin$$b0$$eCorresponding author
001028495 245__ $$aCombined assimilation of NOAA surface and MIPAS satellite observations to constrain the global budget of carbonyl sulfide
001028495 260__ $$aKatlenburg-Lindau$$bEGU$$c2024
001028495 3367_ $$2DRIVER$$aarticle
001028495 3367_ $$2DataCite$$aOutput Types/Journal article
001028495 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721117452_10763
001028495 3367_ $$2BibTeX$$aARTICLE
001028495 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001028495 3367_ $$00$$2EndNote$$aJournal Article
001028495 520__ $$aCarbonyl sulfide (COS), a trace gas in our atmosphere that leads to the formation of aerosols in the stratosphere, is largely taken up by terrestrial ecosystems. Quantifying the biosphere uptake of COS could provide a useful quantity to estimate gross primary productivity (GPP). Some COS sources and sinks still contain large uncertainties, and several top-down estimates of the COS budget point to an underestimation of sources, especially in the tropics. We extended the inverse model TM5-4DVAR to assimilate Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite data, in addition to National Oceanic and Atmospheric Administration (NOAA) surface data as used in a previous study. To resolve possible discrepancies among the two observational data sets, a bias correction scheme is necessary and implemented. A set of inversions is presented that explores the influence of the different measurement streams and the settings of the prior fluxes. To evaluate the performance of the inverse system, the HIAPER Pole-to-Pole Observations (HIPPO) aircraft observations and NOAA airborne profiles are used. All inversions reduce the COS biosphere uptake from a prior value of 1053 GgS a−1 to much smaller values, depending on the inversion settings. These large adjustments of the biosphere uptake often turn parts of Amazonia into a COS source. Only inversions that exclusively use MIPAS observations, or strongly reduce the prior errors on the biosphere flux, maintain the Amazon as a COS sink. Inclusion of MIPAS data in the inversion leads to a better separation of land and ocean fluxes. Over the Amazon, these inversions reduce the biosphere uptake from roughly 300 to 100 GgS a−1, indicating a strongly overestimated prior uptake in this region. Although a recent study also reported reduced COS uptake over the Amazon, we emphasise that a careful construction of prior fluxes and their associated errors remains important. For instance, an inversion that gives large freedom to adjust the anthropogenic and ocean fluxes of CS2, an important COS precursor, also closes the budget satisfactorily with much smaller adjustments to the biosphere. We achieved better characterisation of biosphere prior and uncertainty, better characterisation of combined ocean and land fluxes, and better constraint of both by combining surface and satellite observations. We recommend more COS observations to characterise biosphere and ocean fluxes, especially over the data-poor tropics.
001028495 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001028495 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001028495 7001_ $$00000-0002-4758-3368$$aKooijmans, Linda M. J.$$b1
001028495 7001_ $$0P:(DE-HGF)0$$aGlatthor, Norbert$$b2
001028495 7001_ $$00000-0002-9396-0400$$aMontzka, Stephen A.$$b3
001028495 7001_ $$0P:(DE-Juel1)129170$$avon Hobe, Marc$$b4
001028495 7001_ $$00000-0002-6688-8968$$aRöckmann, Thomas$$b5
001028495 7001_ $$00000-0002-3506-2477$$aKrol, Maarten C.$$b6$$eCorresponding author
001028495 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-24-6047-2024$$gVol. 24, no. 10, p. 6047 - 6070$$n10$$p6047 - 6070$$tAtmospheric chemistry and physics$$v24$$x1680-7316$$y2024
001028495 8564_ $$uhttps://juser.fz-juelich.de/record/1028495/files/acp-24-6047-2024.pdf$$yOpenAccess
001028495 8564_ $$uhttps://juser.fz-juelich.de/record/1028495/files/acp-24-6047-2024.gif?subformat=icon$$xicon$$yOpenAccess
001028495 8564_ $$uhttps://juser.fz-juelich.de/record/1028495/files/acp-24-6047-2024.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001028495 8564_ $$uhttps://juser.fz-juelich.de/record/1028495/files/acp-24-6047-2024.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001028495 8564_ $$uhttps://juser.fz-juelich.de/record/1028495/files/acp-24-6047-2024.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001028495 909CO $$ooai:juser.fz-juelich.de:1028495$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001028495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129170$$aForschungszentrum Jülich$$b4$$kFZJ
001028495 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001028495 9141_ $$y2024
001028495 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001028495 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001028495 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:38:07Z
001028495 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:38:07Z
001028495 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001028495 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
001028495 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028495 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:38:07Z
001028495 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
001028495 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001028495 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001028495 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001028495 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21
001028495 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001028495 920__ $$lno
001028495 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
001028495 980__ $$ajournal
001028495 980__ $$aVDB
001028495 980__ $$aUNRESTRICTED
001028495 980__ $$aI:(DE-Juel1)IEK-7-20101013
001028495 9801_ $$aFullTexts
001028495 981__ $$aI:(DE-Juel1)ICE-4-20101013