001     1028499
005     20250204113908.0
024 7 _ |a 10.1007/s11307-023-01881-y
|2 doi
024 7 _ |a 1536-1632
|2 ISSN
024 7 _ |a 1860-2002
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-04651
|2 datacite_doi
024 7 _ |a 38066252
|2 pmid
024 7 _ |a WOS:001117836400001
|2 WOS
037 _ _ |a FZJ-2024-04651
082 _ _ |a 570
100 1 _ |a Mamlins, Eduards
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a The Theranostic Optimization of PSMA-GCK01 Does Not Compromise the Imaging Characteristics of [99mTc]Tc-PSMA-GCK01 Compared to Dedicated Diagnostic [99mTc]Tc-EDDA/HYNIC-iPSMA in Prostate Cancer
260 _ _ |a Cham
|c 2024
|b Springer Nature Switzerland
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721131649_10764
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a PURPOSE: Radiolabeled PSMA-ligands play a major role in today's nuclear medicine. Since approval of [177Lu]Lu-PSMA-617 for therapy of metastatic prostate cancer, availability of 177Lu became bottleneck of supply due to the high demand. Recently, a theranostic PSMA-ligand, PSMA-GCK01, was developed which can be labeled either diagnostically with 99mTc or therapeutically with 188Re with both nuclides available from well-known generator systems. This novel tracer might aid to overcome aforementioned supply limitations. In this investigation, the biodistribution and general imaging characteristics of [99mTc]Tc-PSMA-GCK01 were compared with the diagnostic reference compound [99mTc]Tc-EDDA/HYNIC-iPSMA in patients with advanced stage prostate cancer. In addition, the binding of both ligands to PSMA was analyzed at the molecular level using molecular docking.PROCEDURES: Two cohorts (n = 19 vs. n = 21) of patients with metastatic castration-resistant prostate cancer matched for age, tumor stage, and Gleason score underwent a planar gamma camera imaging with [99mTc]Tc-EDDA/HYNIC-iPSMA or [99mTc]Tc-PSMA-GCK01 prior to PSMA-ligand therapy for PSMA-phenotyping. The imaging data were retrospective analyzed for salivary gland, kidney, liver, soft tissue, and tumor uptake on a semi-automated ROI-analysis using HERMES Medical Solutions AB (HMS, Sweden).RESULTS: The data sets were semi-automated quantified on a ROI-based analysis. The tumor-to-background presented equal results of [99mTc]Tc-PSMA-GCK01 compared to [99mTc]Tc-EDDA/HYNIC-iPSMA. The physiological PSMA-positive organs like salivary gland presented also equal uptake in counts/MBq (salivary gland median 9.48 [99mTc]Tc-PSMA-GCK01 vs. median 9.11 [99mTc]Tc-EDDA/HYNIC-iPSMA), while liver-to-kidney ratio presented a slight shift to the liver parenchyma using [99mTc]Tc-PSMA-GCK01 (0.83) compared to [99mTc]Tc-EDDA/HYNIC-iPSMA (0.55) with no statistical significance. This is in agreement with the results from the docking study revealing only a minor difference in the docking scores for both ligands.CONCLUSIONS: The novel theranostic tracer [99mTc]Tc/[188Re]Re-PSMA-GCK01 demonstrates comparable general imaging characteristic with the reference compound [99mTc]Tc-EDDA/HYNIC-iPSMA. These results pave the way for the PSMA-targeting imaging and theranostic agents for a broader, rather low-cost, generator applied radio-ligand therapy utilization.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Scharbert, Lara
|0 P:(DE-Juel1)185030
|b 1
700 1 _ |a Cardinale, Jens
|0 P:(DE-Juel1)131814
|b 2
700 1 _ |a Krotov, Maria
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Winter, Erik
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rathke, Hendrik
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Strodel, Birgit
|0 P:(DE-Juel1)132024
|b 6
700 1 _ |a Ankrah, Alfred O.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Sathekge, Mike
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Haberkorn, Uwe
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kratochwil, Clemens
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Giesel, Frederik L.
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1007/s11307-023-01881-y
|g Vol. 26, no. 1, p. 81 - 89
|0 PERI:(DE-600)2079211-6
|n 1
|p 81 - 89
|t Molecular imaging & biology
|v 26
|y 2024
|x 1536-1632
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1028499/files/s11307-023-01881-y.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1028499/files/s11307-023-01881-y.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1028499/files/s11307-023-01881-y.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1028499/files/s11307-023-01881-y.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1028499/files/s11307-023-01881-y.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1028499
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185030
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)132024
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-22
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL IMAGING BIOL : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21