001028507 001__ 1028507
001028507 005__ 20250324083534.0
001028507 0247_ $$2ISSN$$a0955-2219
001028507 0247_ $$2ISSN$$a1873-619X
001028507 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04659
001028507 037__ $$aFZJ-2024-04659
001028507 082__ $$a660
001028507 1001_ $$0P:(DE-Juel1)171262$$aWang, Jiayue$$b0$$eCorresponding author
001028507 245__ $$aRecommended strategies for quantifying oxygen vacancies with X-ray photoelectron spectroscopy
001028507 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001028507 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1721648596_28942
001028507 3367_ $$2ORCID$$aWORKING_PAPER
001028507 3367_ $$028$$2EndNote$$aElectronic Article
001028507 3367_ $$2DRIVER$$apreprint
001028507 3367_ $$2BibTeX$$aARTICLE
001028507 3367_ $$2DataCite$$aOutput Types/Working Paper
001028507 520__ $$aOxygen vacancies play a crucial role in shaping the properties of metal oxides for diverse applications such as catalysis, ferroelectricity, magnetism, and superconductivity. Although X-ray photoelectron spectroscopy (XPS) is a robust tool, accurate quantification of oxygen vacancies remains a challenge. A common mistake in XPS analysis is associating the 531-532 eV feature in O 1 s spectra with oxygen vacancies. This is incorrect because a vacant oxygen site does not emit photoelectrons and therefore does not generate a direct XPS spectral feature. To address this issue, we propose three alternative approaches for oxygen vacancy analysis with XPS through indirect features: (1) quantifying cation valence state variations, (2) assessing oxygen nonstoichiometry via normalized oxygen spectral intensity, and (3) evaluating Fermi energy changes from electrostatic shifts in the binding energy. This work will enable precise XPS analysis of oxygen vacancies, promoting future studies in understanding and manipulating oxygen vacancies for advanced material development.
001028507 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001028507 536__ $$0G:(GEPRIS)319443528$$aDFG project 319443528 - Magnetfeldunterstützte chemische Gasphasenabscheidung von Übergansmetalloxiden und in situ Untersuchungen der elektronischen Struktur mit Hilfe von Roentgenabsorptionsspektroskopie (MagSpec) (319443528)$$c319443528$$x1
001028507 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001028507 7001_ $$0P:(DE-Juel1)166093$$aMüller, David$$b1$$ufzj
001028507 7001_ $$0P:(DE-HGF)0$$aCrumlin, Ethan J.$$b2
001028507 773__ $$0PERI:(DE-600)2013983-4$$gp. 116709 -$$p116709 -$$tJournal of the European Ceramic Society$$x0955-2219$$y2024
001028507 8564_ $$uhttps://juser.fz-juelich.de/record/1028507/files/1-s2.0-S095522192400582X-main-1.pdf$$yOpenAccess
001028507 8564_ $$uhttps://juser.fz-juelich.de/record/1028507/files/1-s2.0-S095522192400582X-main-1.gif?subformat=icon$$xicon$$yOpenAccess
001028507 8564_ $$uhttps://juser.fz-juelich.de/record/1028507/files/1-s2.0-S095522192400582X-main-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001028507 8564_ $$uhttps://juser.fz-juelich.de/record/1028507/files/1-s2.0-S095522192400582X-main-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001028507 8564_ $$uhttps://juser.fz-juelich.de/record/1028507/files/1-s2.0-S095522192400582X-main-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001028507 909CO $$ooai:juser.fz-juelich.de:1028507$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001028507 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
001028507 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001028507 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
001028507 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028507 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001028507 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001028507 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
001028507 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-01
001028507 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-01
001028507 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
001028507 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2022$$d2025-01-01
001028507 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-01
001028507 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-01
001028507 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ EUR CERAM SOC : 2022$$d2025-01-01
001028507 9141_ $$y2024
001028507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166093$$aForschungszentrum Jülich$$b1$$kFZJ
001028507 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001028507 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
001028507 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x1
001028507 980__ $$apreprint
001028507 980__ $$aVDB
001028507 980__ $$aUNRESTRICTED
001028507 980__ $$aI:(DE-Juel1)PGI-6-20110106
001028507 980__ $$aI:(DE-Juel1)PGI-7-20110106
001028507 9801_ $$aFullTexts