001     1028507
005     20250324083534.0
024 7 _ |2 ISSN
|a 0955-2219
024 7 _ |2 ISSN
|a 1873-619X
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2024-04659
037 _ _ |a FZJ-2024-04659
082 _ _ |a 660
100 1 _ |0 P:(DE-Juel1)171262
|a Wang, Jiayue
|b 0
|e Corresponding author
245 _ _ |a Recommended strategies for quantifying oxygen vacancies with X-ray photoelectron spectroscopy
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2024
336 7 _ |0 PUB:(DE-HGF)25
|2 PUB:(DE-HGF)
|a Preprint
|b preprint
|m preprint
|s 1721648596_28942
336 7 _ |2 ORCID
|a WORKING_PAPER
336 7 _ |0 28
|2 EndNote
|a Electronic Article
336 7 _ |2 DRIVER
|a preprint
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DataCite
|a Output Types/Working Paper
520 _ _ |a Oxygen vacancies play a crucial role in shaping the properties of metal oxides for diverse applications such as catalysis, ferroelectricity, magnetism, and superconductivity. Although X-ray photoelectron spectroscopy (XPS) is a robust tool, accurate quantification of oxygen vacancies remains a challenge. A common mistake in XPS analysis is associating the 531-532 eV feature in O 1 s spectra with oxygen vacancies. This is incorrect because a vacant oxygen site does not emit photoelectrons and therefore does not generate a direct XPS spectral feature. To address this issue, we propose three alternative approaches for oxygen vacancy analysis with XPS through indirect features: (1) quantifying cation valence state variations, (2) assessing oxygen nonstoichiometry via normalized oxygen spectral intensity, and (3) evaluating Fermi energy changes from electrostatic shifts in the binding energy. This work will enable precise XPS analysis of oxygen vacancies, promoting future studies in understanding and manipulating oxygen vacancies for advanced material development.
536 _ _ |0 G:(DE-HGF)POF4-632
|a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|c POF4-632
|f POF IV
|x 0
536 _ _ |0 G:(GEPRIS)319443528
|a DFG project 319443528 - Magnetfeldunterstützte chemische Gasphasenabscheidung von Übergansmetalloxiden und in situ Untersuchungen der elektronischen Struktur mit Hilfe von Roentgenabsorptionsspektroskopie (MagSpec) (319443528)
|c 319443528
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)166093
|a Müller, David
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Crumlin, Ethan J.
|b 2
773 _ _ |0 PERI:(DE-600)2013983-4
|g p. 116709 -
|p 116709 -
|t Journal of the European Ceramic Society
|x 0955-2219
|y 2024
856 4 _ |u https://juser.fz-juelich.de/record/1028507/files/1-s2.0-S095522192400582X-main-1.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028507/files/1-s2.0-S095522192400582X-main-1.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028507/files/1-s2.0-S095522192400582X-main-1.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028507/files/1-s2.0-S095522192400582X-main-1.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028507/files/1-s2.0-S095522192400582X-main-1.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1028507
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)166093
|a Forschungszentrum Jülich
|b 1
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-632
|1 G:(DE-HGF)POF4-630
|2 G:(DE-HGF)POF4-600
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2024
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2025-01-01
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2025-01-01
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-01
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-01
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J EUR CERAM SOC : 2022
|d 2025-01-01
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2025-01-01
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2025-01-01
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b J EUR CERAM SOC : 2022
|d 2025-01-01
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21