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A B S T R A C T

Oxygen vacancies play a crucial role in shaping the properties of metal oxides for diverse applications such as
catalysis, ferroelectricity, magnetism, and superconductivity. Although X-ray photoelectron spectroscopy (XPS)
is a robust tool, accurate quantification of oxygen vacancies remains a challenge. A common mistake in XPS
analysis is associating the 531–532 eV feature in O 1s spectra with oxygen vacancies. This is incorrect because a
vacant oxygen site does not emit photoelectrons and therefore does not generate a direct XPS spectral feature. To
address this issue, we propose three alternative approaches for oxygen vacancy analysis with XPS through indirect
features: (1) quantifying cation valence state variations, (2) assessing oxygen nonstoichiometry via normalized
oxygen spectral intensity, and (3) evaluating Fermi energy changes from electrostatic shifts in the binding en-
ergy. The recommended strategies will facilitate precise XPS analysis of oxygen vacancies, promoting future
studies in understanding and manipulating oxygen vacancies for advanced material development.

1. Introduction

Metal oxides are at the forefront of materials design due to their
broad applications in clean energy systems, information storage and
processing, and quantum technology, among others [1–3]. The func-
tionality and durability of these metal oxide devices depend strongly on
internal atomic perturbations (i.e., point defects), particularly oxygen
vacancies, which are missing atoms at the oxygen lattice sites [4–7].
Previous studies have shown that the formation and annihilation of
oxygen vacancies in metal oxides can significantly affect their properties
in applications such as catalysis [8], ferroelectricity [9], magnetism
[10], superconductivity [11], and ionic conductivity [12]. Therefore,
obtaining a better understanding of oxygen vacancies and how to con-
trol them is crucial to materials innovation for next-generation
technologies.

X-ray photoelectron spectroscopy (XPS) is a powerful tool for
investigating the chemistry and electronic structure of materials
[13–15]. Nevertheless, accurately quantifying oxygen vacancies
through XPS poses a persistent challenge. Since vacant oxygen lattice
sites do not directly produce XPS signals, the selection of suitable XPS

features for quantifying oxygen vacancies in materials remains contro-
versial. To date, a commonly adopted approach in the literature is to
deconvolute the O 1s spectra into lattice oxygen and oxygen vacancy
components, with the latter typically exhibiting a binding energy be-
tween 531 eV and 532 eV [16,17]. While widely used in the literature,
there is no clear physical basis for this assignment and analysis. First, it is
clear that this ~531 eV feature cannot be directly generated by an ox-
ygen vacancy, as the prerequisite for an XPS signal (the existence of an
oxygen 1s electron) is not met at an unoccupied oxygen site. Further-
more, recent in situ XPS studies on CeO2 [18] and TiO2 [19] have shown
that the O 1s spectral profile remains largely unchanged before and after
reduction, indicating that the ~531 eVO 1s shoulder peak is also un-
likely to originate from neighboring oxygen sites near an oxygen va-
cancy [20,21]. Instead, accumulating evidence [22–25] suggests that
the 531–532 eV feature in the O 1s spectrum arises from physisorbed or
chemisorbed oxygen species (e.g., hydroxyl groups) on oxide surfaces
[26]. As gas molecules can preferentially adsorb onto oxygen vacancies
[27], the concentrations of surface-adsorbed oxygen species and oxygen
vacancies may sometimes show correlation [17,28]. However, using the
features of oxygen adsorbates to quantify surface oxygen vacancy
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concentrations is notably inaccurate. For instance, even in a fully
oxidized sample, the concentration of surface adsorbed oxygen can be
substantial [29–31]. Therefore, relying on the ~531 eV feature in the O
1s spectra to analyze oxygen vacancies is incorrect. A thorough reeval-
uation of the method for precise oxygen vacancy analysis in XPS is
essential for the advancement of the field.

In this paper, we propose a three-fold approach to oxygen vacancy
quantification with XPS, focusing on the electronic [32] and stoichio-
metric [33] changes induced by oxygen vacancy formation and anni-
hilation. First, through the analysis of redox-active cations, which lower
their valence states upon oxygen vacancy formation, the concentration
of oxygen vacancies can be determined (Fig. 1a). Second, oxygen va-
cancies can be quantified by examining the surface oxygen-to-cation
stoichiometry, which decreases as materials release oxygen and form
oxygen vacancies (Fig. 1b). Third, due to electron doping, the electron
chemical potential in oxides may increase upon oxygen vacancy for-
mation. Consequently, XPS can be used to probe oxygen vacancies in
materials by assessing shifts in the electron chemical potential within
the samples (Fig. 1c). It is important to note that not all three approaches
work equally well (or at all) on all materials, and thus it is important to
understand the physical, chemical, and spectroscopic behavior of the
materials in order to choose the right approach. In the following sec-
tions, we provide an in-depth exploration of how XPS can be used to
quantitatively evaluate oxygen vacancies in different material classes
using these three techniques.

2. Probing oxygen vacancies via cation valence state

When an oxide forms an oxygen vacancy, it is often accompanied by
a decrease in the valence state of redox-active cations [34,35]. Under

such scenarios, the presence of oxygen vacancies in materials may be
deduced from the evolution of XPS cation spectra if the spectra are
straightforward to interpret. This is usually the case when the reduced
form of the cation has a single electron in the outermost shell, so no
multiplet effects complicate the spectral shapes [36], and the electrons
used to compensate for the oxygen vacancies are quite localized. In
Fig. 2, we present several examples from the literature illustrating the
evolution of XPS cation spectra during oxygen vacancy formation in
several different materials.

In CeO2, the oxygen vacancy formation is accompanied by the
reduction of Ce4+ to Ce3+ (Ref. [37]), corresponding to a change from a
4f0 to a 4f1 configuration, which can be probed with both Ce 4d and
valence band XPS spectra (Fig. 2a). For the Ce 4d spectra, the two
components exhibiting the highest binding energies (as shown in the
shaded region in the plot) originate from Ce4+ species. Notably, the Ce4+

features diminish as the lattice undergoes reduction, indicating a
reduction in the ceria surface. Examining the valence band spectra, the
feature at approximately 1.5 eV corresponds to the Ce 4f peak, which
reflects the concentration of Ce3+ at the surface. Additionally, the in-
tensity of the valence band Ce 4f peak increases as the surface undergoes
further reduction. In TiO2, the formation of oxygen vacancies correlates
with the reduction of Ti4+ to Ti3+ (3d0 to 3d1). Consequently, Ti3+

species are evident in the lower binding energy region of the Ti 2p
spectrum for the reduced TiO2 samples [19] (Fig. 2b). In Fig. 2c, we
show the cation spectral evolution during the reduction of V2O5
(Ref. [38]). In the oxidized state, only V5+ (3d0) species can be observed
in the V 2p spectra. However, the V 2p spectra of reduced V2O5 exhibits a
shoulder peak in the lower binding energy region, suggesting the for-
mation of V4+ (3d1). All three compounds exhibit little charge transfer
from the ligand to the cation [39], so cation core-level XPS is a valid

Fig. 1. The three proposed approaches for quantifying oxygen vacancies using XPS: (a) cation valence state, (b) oxygen nonstoichiometry, and (c) electron chemical
potential shift.(a) In the first approach, the oxygen vacancy concentration in materials is quantified by monitoring the change in valence state of the redox-active
cations, assuming charge neutrality. (b) The second approach involves quantifying the O-to-cation ratio or tracking the evolution of normalized oxygen spectral
intensity. This allows for probing the oxygen nonstoichiometry in oxides. (c) The third approach investigates oxygen vacancy by monitoring the rigid shift in binding
energy from redox-inert elements, which remain in a constant valence state during oxygen release reactions. This shift is attributed to the modulation of the Fermi
level position in oxides resulting from oxygen vacancy formation. In all figures (a-c), the direction of the arrows indicates the formation of oxygen vacancies, i.e.,
lattice reduction. B.E. denotes binding energy.
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probe for the valence state.
Based on the cation spectral evolution described above, the con-

centration of oxygen vacancies can be quantified by calculating the
valence state of cations, assuming that charge neutrality is preserved
within the probing depth of XPS and charge compensation for vacancies
is exclusively electronic and not ionic by, e.g., formation of interstitials
or Schottky defects. For example, in the case of reduced TiO2 shown in
Fig. 2b, the concentration of Ti3+was calculated to be 12 % by fitting the
Ti 2p spectra [19]. Based on the quantified Ti3+ concentration, the
surface composition can be calculated as Ti4+0.88Ti

3+
0.12O

2−
1.94. We can

therefore calculate the oxygen nonstoichiometry for the reduced TiO2
sample as 2 − 1.94 = 0.06. Notably, the key aspect of this approach lies
in precisely determining the valence state of cations in materials, which
requires careful fitting of the XPS spectra. A comprehensive discussion
on XPS fitting is beyond the scope of this review; however, interested
readers can find detailed guidance in the literature (for example,
Ref. [40–42]).

As discussed in the introduction, we want to emphasize that the
formation of oxygen vacancies in metal oxides does not always lead to
significant changes in peak shapes observed in cation XPS spectra.
Consider, for example, negative charge transfer oxides such as La1-
xSrxFeO3 (LSF), where the redox center primarily resides on the ligand (i.
e., O). [43,44] In such cases, the formation of oxygen vacancies tends to
have a negligible impact on the cation valence state, and, consequently,
the peak shape in cation XPS spectra remains largely unchanged [45] as
the electron configuration changes from 3d5L to 3d5 upon reduction,
where L denotes a ligand hole [46]. Therefore, relying solely on cation
spectral analysis would not be adequate for quantifying oxygen va-
cancies in these materials. In the following sections, we discuss a tech-
nique to quantify oxygen vacancies in such scenarios by examining
oxygen nonstoichiometry and Fermi energy shift.

3. Probing oxygen vacancies via oxygen non-stoichiometry

As materials release oxygen and generate oxygen vacancies, the ox-
ygen concentration within the oxide lattice diminishes, leading to a
reduction in the intensity of lattice oxygen species in XPS spectra.
Therefore, oxygen vacancies can be probed with XPS by quantifying the
oxygen nonstoichiometry (δ) in oxides. Specifically, the change in sur-
face oxygen nonstoichiometry (Δδ) during oxygen vacancy formation
relative to the oxidized surface can be determined using the following
equation:

Δδ = 1 −
A(Olattice)

A(Olattice)oxidized
(1)

where A denotes the lattice oxygen peak area in the normalized ox-
ygen spectra (e.g., O 1s) and the subscript “oxidized” denotes the spectra
collected on an oxidized sample surface.

We want to emphasize that in Eq. 1, it is crucial to utilize the
normalized oxygen spectral intensity rather than the absolute intensity
derived from the raw XPS data. This normalization is essential because
the raw XPS intensity can be affected by numerous factors beyond sur-
face oxygen stoichiometry, such as surface roughness, temperature, gas
atmosphere, and photon intensity [13]. Therefore, to mitigate interfer-
ence from these factors, normalizing the oxygen spectral intensity is
necessary for accurately quantifying oxygen nonstoichiometry. Here, we
suggest normalizing the oxygen spectra to the intensity of a redox-inert
cation spectrum, which should be collected under identical environ-
mental conditions and during the same XPS measurement. When
analyzing materials that do not have redox-inert cation spectra, such as
binary oxides, normalizing the oxygen spectra can also be achieved
using the XPS background intensities or the area of the redox-active

Fig. 2. Cation XPS spectral evolution during oxide reduction. (a) Ce 4d and
valence band evolution during the reduction of CeO2, highlighting the decrease
in the Ce4+ feature and the concurrent increase in Ce3+. (b) Ti 2p spectra of
stoichiometric and reduced TiO2. (c) V 2p spectra showing the emergence of
V4+ species during the reduction of V2O5.
(a) Reproduced from Ref. [37] with permission from the Royal Society of

Chemistry. (b) Reproduced with permission from Ref. [19]. (c) Reproduced
with permission from Ref. [38].
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cation spectra. Nonetheless, this approach may introduce increased
uncertainty, as the normalization factor itself could fluctuate during the
chemical reaction. Notably, surface oxygen vacancy formation or anni-
hilation is sometimes linked to the emergence of surface heterogeneity,
including phenomena such as cation segregation [47] and dissolution
[48]. In such cases, the normalization process can becomemore complex
andmight require modeling [49]. Below, we explore several examples in
Fig. 3 where normalized oxygen spectra are utilized for quantifying
surface oxygen stoichiometry.

In the first example, we show normalized O 1s intensity can be used
to quantity surface oxygen stoichiometric variation in perovskite oxides
during reduction. For LSF, in-situ Fe 3p and O 1s spectra were collected
as the sample underwent reduction during heating in an H2 atmosphere
[50] (Fig. 3a). Here, the O 1s spectra were normalized to the La 4d in-
tensity. Notably, the normalized O 1s intensity begins to decrease above
300 ◦C, indicating that the rate of oxygen release in LSF (i.e., the for-
mation rate of oxygen vacancies) only becomes discernible at elevated
temperatures [44]. In this analysis, O 1s spectra were normalized to the
intensity of La 4d, as La remains inert during the reduction reaction.
Upon further heating of LSF, the oxygen intensity continues to decrease
with increasing temperature, suggesting an increasing concentration of
oxygen vacancies within LSF. Eventually, at temperatures exceeding 350
◦C, the emergence of metallic Fe0 species on the surface becomes
evident. The Fe0 formation represents the partial decomposition of LSF
[51] because the oxygen nonstoichiometry in LSF exceeds the
thermo-chemical stability limit [52] of the perovskite phase. Therefore,
by analyzing both the cation and anion spectra, one can effectively
probe the formation of oxygen vacancies in a dynamic phase trans-
formation process, as demonstrated in this study.

In the second example, we show that the normalized O 1s and O 2p
peaks can be used to quantify the extent of reduction of the binary oxide
CeO2 (Fig. 3b). As detailed in reference [53], the near-surface fraction of
Ce3+was determined using the Ce 4f feature in the valence-band spectra
(see Fig. 2a). Moreover, the O 2p and O 1s spectra were normalized by
the integrated intensity of Ce 4d spectra. As illustrated, the normalized
oxygen intensity decreases as the sample undergoes reduction, revealing
a reverse correlation with the surface Ce3+ concentration. Notably, the
ratio between the changes in normalized O intensity and surface Ce3+

concentration was quantified to be 0.30±0.02, which closely aligns with
the electroneutral site fraction of 0.25. This self-consistency underscores
the efficacy of both the cation and anion XPS spectra in the analysis of
oxygen vacancies in oxides.

As a third example, we show that XPS can effectively capture the
surface oxygen vacancy formation and annihilation during redox
cycling. In this experiment [54], XPS was performed on SnO2-δ subjected
to alternating cycles of exposure to ultra-high vacuum (UHV) and O2
atmospheres. The Sn-to-O ratio of SnO2-δ was quantified during the
redox cycling at 350 ◦C is shown in Fig. 3c. As illustrated, XPS effectively
monitored the variation in oxygen vacancy concentration within SnO2-δ
during this process. Starting with an O/Sn value of around 1.3 after the
initial UHV reduction, the ratio increased to approximately 1.7 after
exposing the sample to 1 mTorr O2. The increased O/Sn ratio after O2
exposure reflects a decrease in oxygen vacancy concentration due to
sample oxidation. The subsequent cycle consistently reproduced O/Sn
values of ~1.7 under 1 mTorr O2 and ~1.5 under UHV. Notably, under 2
mTorr O2 conditions, the O/Sn ratio further increased to approximately
1.8, reflecting a more oxidized sample surface under elevated O2 pres-
sure. The remarkable reversibility of the quantified O/Sn ratio and its

Fig. 3. Oxygen spectral intensity evolution during redox reactions.(a) In situ Fe 3p and O 1s spectra of La0.6Sr0.4FeO3-δ heated an in H2 atmosphere. The normalized O
1s intensity decreases during sample reduction, accompanied by the formation of reduced metallic iron (Fe0) specie. (b) Normalized oxygen intensity decreases as the
CeO2 surface undergoes reduction. Note that the experimentally observed slope relating oxygen intensity to surface Ce3+ concentration is 0.30, closely matching the
electroneutral site fraction of 0.25. (c) XPS quantification of the O-to-Sn ratio during the redox-cycling of SnO2-δ. Notably, the O/Sn ratio evolution captures surface
oxidation or reduction upon changes in the gas atmosphere.
(a) Reproduced from Ref.[50] Copyright 2021 American Chemical Society (b) Reproduced from Ref. [53] with permission. (c) Reproduced from Ref. [54] with
permission from the Royal Society of Chemistry.
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Fig. 4. Oxygen vacancy formation induces electrostatic binding energy shifts in XPS. (a) Schematics depict how variations in Fermi energy can lead to XPS binding
energy shifts. (b) Comparison of Fe 2p, O 1s, and Sr 3d spectra between STF and LSF under O2 and H2/H2O atmospheres. The Fe 2p spectra clearly indicate sample
reduction in H2/H2O. More importantly, the binding energy of O and Sr increases by approximately 0.9 eV in a reducing atmosphere. (c) Similarly, the reduction of
LSM, evident from Mn L-edge absorption spectra, also leads to a shift in the O 1s spectra toward higher binding energy.
(b) Reprinted from Ref. [57] with permission. Copyright 2015 American Chemical Society. (c) Reproduced from Ref. [62] with permission.
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high sensitivity to external oxygen partial pressure highlight the reli-
ability of using XPS for the precise quantification of surface oxygen
stoichiometry. This example also highlights that even though we cannot
directly probe a vacant oxygen site with XPS, we can accurately assess
the oxygen vacancy concentration in the sample by precisely quanti-
fying the oxygen stoichiometry.

4. Probing oxygen vacancies via Fermi level shift analysis

Since oxygen vacancy formation in metal oxides is often accompa-
nied by electron doping into the materials [32], the Fermi energy level
tends to undergo an upward shift during oxygen vacancy formation [55,
56]. This effect can be also investigated using XPS [57,58]. This is
because the binding energy represents the energy difference between an
occupied electronic state and the Fermi level [59], and an upward shift
in the Fermi energy will lead to an apparent increase in binding energy
(Fig. 4a). Therefore, the presence of oxygen vacancies can be probed by
quantifying electrostatic shifts in binding energies in XPS. It is crucial to
acknowledge that variations in the oxidation state can also induce a shift
in binding energy [60], known as the "chemical shift.61" For example, as
shown Fig. 2b, the Ti 2p spectra from reduced Ti3+ species display a
lower binding energy than the oxidized Ti4+. Therefore, a thorough
analysis of the redox-inactive spectra is necessary to confirm that the
observed binding energy shift is attributed to the formation or annihi-
lation of oxygen vacancies.

Here, we give a few examples on binding energy shift in core-level
spectra during the reduction of perovskite oxides. In Fig. 4b, we show
the Sr 3d, O 1s, and Fe 2p XPS spectra of LSF and SrTi0.65Fe0.35O3 (STF)
under both oxidizing and reducing atmospheres at 615◦C (Ref. [57]).
The Fe 2p spectra reveal a clear reduction in the Fe valence state for both
LSF and STF when exposed to the H2/H2O atmosphere, characterized by
a reduction in the Fe3+ satellite features. Throughout this reduction
process, Sr2+ and O2- remain redox-inactive with a constant valence
state. However, the binding energy of the Sr 3d and O 1s spectra
exhibited an approximate 1 eV increase upon transitioning from O2 to
the H2/H2O atmospheres. Although not shown in Fig. 4b, the Ti 2p and
La 4d spectra also exhibit similar binding energy shifts during the
reduction process for STF and LSF, respectively [57]. As another
example, in Fig. 4c, we show the O 1s spectral evolution for
La0.2Sr0.8MnO3 (LSM) during reduction [62]. The reduction-induced
valence state reduction of Mn cations is confirmed with X-ray absorp-
tion spectroscopy (XAS). Notably, the O 1s spectra also shift towards
higher binding energy as LSM undergoes reduction, similar to STF and
LSF.

To date, a comprehensive quantitative analysis of oxygen vacancy
concentration through electrostatic binding energy shift analysis in XPS
spectra has yet to be fully established. This is partially attributed to the
challenge of interpreting the somewhat complex binding energy shifts.
Nevertheless, we include this approach due to its potential for numerous
applications, given the sensitivity of Fermi energy shifts to small changes
oxygen vacancy concentrations in certain systems [63]. One viable
strategy for XPS binding energy analysis involves integrating it with
thermodynamic defect modeling. For example, Rothschild et al. devel-
oped a defect model for SrTi1-xFexO3-δ (STF) solid solutions, where they
calculated the variation in the Fermi level as a function of the oxygen
partial pressure [61]. Their model demonstrated a Fermi level increase
of approximately 1 eV when the system changed from oxidizing (104 Pa)
to reducing (10− 14 Pa) conditions at 850 ◦C. Notably, this calculated
1 eV Fermi level shift aligns with the experimentally observed binding
energy shift in Fig. 4b. In a separate investigation, Bak et al. calculated
the Fermi level variation in (La,Sr)MnO3 as a function of oxygen partial
pressure [63]. In their study, these authors also revealed a Fermi level
upshift upon oxygen vacancy formation, in alignment with the XPS
spectral shift shown in Fig. 4c. Therefore, the integration of defect
modeling with XPS quantification holds the promise of establishing a
quantitative relationship between electrostatic binding energy shifts and

oxygen nonstoichiometry in materials.

5. Conclusion

In this work, we discuss three approaches for investigating oxygen
vacancies with XPS: (1) quantifying the valence state of redox-active
cation spectra, (2) assessing oxygen nonstoichiometry through normal-
ized oxygen spectra, and (3) evaluating Fermi level variations via the
electrostatic binding energy shift in redox-inactive spectra. In contrast to
the commonly employed method of analyzing the 531–532 eV O 1s
spectral feature, these three alternative approaches offer increased
reliability by evaluating the true "fingerprints" of oxygen vacancies in
XPS. We want to emphasize, however, that each of the three approaches
works best for different materials, and selecting the appropriate tech-
nique requires prior knowledge of the physicochemical and spectro-
scopic behavior of the material.

To ensure robust data analysis, when possible and applicable, we
recommend future studies to incorporate more than one of these three
analytical approaches when employing XPS for oxygen vacancy quan-
tification and to evaluate which are applicable. This precaution is crucial
because individual phenomena — such as changes in valence state,
normalized oxygen intensity reduction, and binding energy shifts — do
not inherently imply a change in oxygen vacancy concentration within
metal oxides. First, a reduction in cation valence state does not neces-
sarily imply the formation of oxygen vacancies. For instance, proton-
ation can also lead to a decrease in the valence state of cations in oxides,
without affecting the total oxygen concentration within the lattice [64].
Second, during the reduction/oxidation process, cation segregation [65]
and depletion [47] may occur on the surface. Consequently, observed
variations in the surface anion-to-cation ratio may predominantly stem
from changes in cation stoichiometry rather than oxygen vacancy con-
centration. Furthermore, the electrostatic binding energy shift may be
induced by surface band bending [66], formation of a space charge layer
[67] or sample charging [68,69], introducing a potential source of
ambiguity. Therefore, to mitigate the limitations associated with a single
analytical method, we recommend analyzing both anion and cation
spectra to corroborate the presence and concentration of oxygen va-
cancies within a material. We anticipate that this multifaceted approach
will enhance the robustness and reliability of oxygen vacancy assess-
ments from XPS, thereby deepening our understanding and ability to
manipulate oxygen vacancies in materials.
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