001028626 001__ 1028626
001028626 005__ 20250204113908.0
001028626 0247_ $$2doi$$a10.1016/j.ijheatmasstransfer.2024.125871
001028626 0247_ $$2ISSN$$a0017-9310
001028626 0247_ $$2ISSN$$a1879-2189
001028626 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04699
001028626 0247_ $$2WOS$$aWOS:001265297700001
001028626 037__ $$aFZJ-2024-04699
001028626 082__ $$a620
001028626 1001_ $$0P:(DE-Juel1)179367$$aLee, Namkyu$$b0$$eCorresponding author
001028626 245__ $$aThermal design of a non-isothermal microfluidic channel for measuring thermophoresis
001028626 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2024
001028626 3367_ $$2DRIVER$$aarticle
001028626 3367_ $$2DataCite$$aOutput Types/Journal article
001028626 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1722521711_21174
001028626 3367_ $$2BibTeX$$aARTICLE
001028626 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001028626 3367_ $$00$$2EndNote$$aJournal Article
001028626 520__ $$aThermophoresis describes mass transport in a non-isothermal temperature field and thus provides a fundamentalunderstanding of the behavior of colloidal particles. Various methods have been proposed for measuringthe Soret coefficient, a representative value of thermophoresis. In particular, microscopic channels are anemerging method as they shorten the equilibrium time and allow direct observation of the particles. However,little emphasis has been placed on the simultaneous consideration of fluid dynamics, heat transfer, andmass transfer characteristics within the microfluidic channel, despite the simultaneous presence of naturalconvection and thermodiffusion phenomena. In this study, we present a novel approach to address this gap byintroducing a figure of merit, which incorporates essential parameters to accurately characterize a specific cellconfiguration. This figure of merit allows for the identification of a reliable measurement range in a microfluidicchannel with a temperature gradient, while accounting for fluid dynamics, heat transfer, and mass transfercharacteristics. The proposed approach is validated through rigorous simulations and experiments, enabling anevaluation of the impact of figure of merit-derived parameters on the measurement channel. The findings fromour study demonstrate that the figure of merit serves as a representative measure for stable thermophoreticmeasurements in a microfluidic channel. Moreover, we propose a threshold value that signifies the transitionfrom a diffusion-dominant to a convection-dominant field.
001028626 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001028626 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001028626 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b1
001028626 773__ $$0PERI:(DE-600)2012726-1$$a10.1016/j.ijheatmasstransfer.2024.125871$$gVol. 231, p. 125871 -$$p125871 -$$tInternational journal of heat and mass transfer$$v231$$x0017-9310$$y2024
001028626 8564_ $$uhttps://juser.fz-juelich.de/record/1028626/files/Thermal%20design_v11_final-bw.pdf$$yOpenAccess
001028626 8564_ $$uhttps://juser.fz-juelich.de/record/1028626/files/Thermal%20design_v11_final-bw.gif?subformat=icon$$xicon$$yOpenAccess
001028626 8564_ $$uhttps://juser.fz-juelich.de/record/1028626/files/Thermal%20design_v11_final-bw.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001028626 8564_ $$uhttps://juser.fz-juelich.de/record/1028626/files/Thermal%20design_v11_final-bw.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001028626 8564_ $$uhttps://juser.fz-juelich.de/record/1028626/files/Thermal%20design_v11_final-bw.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001028626 909CO $$ooai:juser.fz-juelich.de:1028626$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001028626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179367$$aForschungszentrum Jülich$$b0$$kFZJ
001028626 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b1$$kFZJ
001028626 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001028626 9141_ $$y2024
001028626 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-19
001028626 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-19
001028626 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028626 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001028626 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-11
001028626 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001028626 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HEAT MASS TRAN : 2022$$d2024-12-11
001028626 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001028626 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001028626 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
001028626 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
001028626 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J HEAT MASS TRAN : 2022$$d2024-12-11
001028626 920__ $$lyes
001028626 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
001028626 980__ $$ajournal
001028626 980__ $$aVDB
001028626 980__ $$aUNRESTRICTED
001028626 980__ $$aI:(DE-Juel1)IBI-4-20200312
001028626 9801_ $$aFullTexts