Hauptseite > Publikationsdatenbank > tfQMRgpu v0.9 - a header-only GPU-accelerated iterative linear solver for multiple right-hand sides > print |
001 | 1028638 | ||
005 | 20250203103439.0 | ||
024 | 7 | _ | |a 10.5281/ZENODO.8333498 |2 doi |
037 | _ | _ | |a FZJ-2024-04705 |
100 | 1 | _ | |a Baumeister, Paul |0 P:(DE-Juel1)156619 |b 0 |e Corresponding author |
245 | _ | _ | |a tfQMRgpu v0.9 - a header-only GPU-accelerated iterative linear solver for multiple right-hand sides |
260 | _ | _ | |c 2023 |
336 | 7 | _ | |a Software |2 DCMI |
336 | 7 | _ | |a Software |b sware |m sware |0 PUB:(DE-HGF)33 |s 1721117944_10764 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a MISC |2 BibTeX |
336 | 7 | _ | |a Computer Program |0 6 |2 EndNote |
336 | 7 | _ | |a OTHER |2 ORCID |
336 | 7 | _ | |a Software |2 DataCite |
520 | _ | _ | |a tfQMRgpu is a C++ header-only library written in CUDA. Version 0.9 aims to offer the transpose-free Quasi Minimal Residual method for the iterative solving of linear problems with multiple right-hand sides using graphical processors (GPUs).The library is shipped with the default use case of complex block-sparse operators with a set of available block sizes to be selected before compilation. C-interfaces expose the APIs for both, single precision (float) and double precision, to be called from other programming languages such as C, Fortran, Julia or Python.The block-sparse matrix solver version can be linked as shared object tfQMRgpu.so.The header-only feature allows to provide a custom C++/CUDA action operators to tfQMRgpu::solve |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Nassyr, Stepan |0 P:(DE-Juel1)172888 |b 1 |
700 | 1 | _ | |a Li, Yanlong |0 P:(DE-HGF)0 |b 2 |
773 | _ | _ | |a 10.5281/ZENODO.8333498 |
856 | 4 | _ | |u https://zenodo.org/records/8333498 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1028638/files/tfQMRgpu-v0.9.zip |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1028638 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)156619 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)172888 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2024 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a sware |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|