001028652 001__ 1028652
001028652 005__ 20250204113909.0
001028652 0247_ $$2doi$$a10.1016/j.epsr.2024.110740
001028652 0247_ $$2ISSN$$a0378-7796
001028652 0247_ $$2ISSN$$a1873-2046
001028652 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04719
001028652 0247_ $$2WOS$$aWOS:001262510800001
001028652 037__ $$aFZJ-2024-04719
001028652 082__ $$a620
001028652 1001_ $$0P:(DE-Juel1)187421$$aMittenbühler, Marcel$$b0$$ufzj
001028652 245__ $$aAutomatically optimized component model computation for power system simulation on GPU
001028652 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001028652 3367_ $$2DRIVER$$aarticle
001028652 3367_ $$2DataCite$$aOutput Types/Journal article
001028652 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1727684104_24590
001028652 3367_ $$2BibTeX$$aARTICLE
001028652 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001028652 3367_ $$00$$2EndNote$$aJournal Article
001028652 520__ $$aThis work provides an approach that automatically optimizes the component computations on graphics processing unit (GPU) devices from different vendors. The approach consists of a two-level optimization, where the first level considers the linear part of the computation for vectorization and applies mixed matrix formats to increase computational throughput further. Then, the second optimization level treats the combination of linear and non-linear parts as a black box and searches for the optimal configuration of parameters such as the degree of vectorization, the combination of matrix formats, and the group (of threads) sizes during parallel execution on GPU. Moreover, we also introduce constraints that reduce the optimization procedure’s execution time. Finally, we select three different types of components that could be representative to computational tasks in power system and perform our optimization approach on these kernels. The computational performance is compared with unoptimized baseline and sparse linear algebra library based implementations, result shows that our optimization leads to better performance and more efficient memory utilization.
001028652 536__ $$0G:(DE-HGF)POF4-1122$$a1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112)$$cPOF4-112$$fPOF IV$$x0
001028652 536__ $$0G:(GEPRIS)450829162$$aDFG project G:(GEPRIS)450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162)$$c450829162$$x1
001028652 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001028652 7001_ $$0P:(DE-Juel1)180837$$aZhang, Junjie$$b1$$eCorresponding author$$ufzj
001028652 7001_ $$0P:(DE-Juel1)179029$$aBenigni, Andrea$$b2$$ufzj
001028652 773__ $$0PERI:(DE-600)1502242-0$$a10.1016/j.epsr.2024.110740$$gVol. 235, p. 110740 -$$p110740 -$$tElectric power systems research$$v235$$x0378-7796$$y2024
001028652 8564_ $$uhttps://juser.fz-juelich.de/record/1028652/files/1-s2.0-S0378779624006266-main.pdf$$yOpenAccess
001028652 8564_ $$uhttps://juser.fz-juelich.de/record/1028652/files/1-s2.0-S0378779624006266-main.gif?subformat=icon$$xicon$$yOpenAccess
001028652 8564_ $$uhttps://juser.fz-juelich.de/record/1028652/files/1-s2.0-S0378779624006266-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001028652 8564_ $$uhttps://juser.fz-juelich.de/record/1028652/files/1-s2.0-S0378779624006266-main.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
001028652 8767_ $$d2024-07-30$$eHybrid-OA$$jDEAL
001028652 909CO $$ooai:juser.fz-juelich.de:1028652$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001028652 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187421$$aForschungszentrum Jülich$$b0$$kFZJ
001028652 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180837$$aForschungszentrum Jülich$$b1$$kFZJ
001028652 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179029$$aForschungszentrum Jülich$$b2$$kFZJ
001028652 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1122$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
001028652 9141_ $$y2024
001028652 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001028652 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001028652 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001028652 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001028652 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001028652 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001028652 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028652 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001028652 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTR POW SYST RES : 2022$$d2024-12-09
001028652 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001028652 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-09
001028652 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-09
001028652 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001028652 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-09
001028652 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001028652 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
001028652 9201_ $$0I:(DE-Juel1)ICE-1-20170217$$kICE-1$$lModellierung von Energiesystemen$$x0
001028652 980__ $$ajournal
001028652 980__ $$aVDB
001028652 980__ $$aUNRESTRICTED
001028652 980__ $$aI:(DE-Juel1)ICE-1-20170217
001028652 980__ $$aAPC
001028652 9801_ $$aAPC
001028652 9801_ $$aFullTexts