Hauptseite > Publikationsdatenbank > Automatically optimized component model computation for power system simulation on GPU > print |
001 | 1028652 | ||
005 | 20250204113909.0 | ||
024 | 7 | _ | |a 10.1016/j.epsr.2024.110740 |2 doi |
024 | 7 | _ | |a 0378-7796 |2 ISSN |
024 | 7 | _ | |a 1873-2046 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-04719 |2 datacite_doi |
024 | 7 | _ | |a WOS:001262510800001 |2 WOS |
037 | _ | _ | |a FZJ-2024-04719 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Mittenbühler, Marcel |0 P:(DE-Juel1)187421 |b 0 |u fzj |
245 | _ | _ | |a Automatically optimized component model computation for power system simulation on GPU |
260 | _ | _ | |a Amsterdam [u.a.] |c 2024 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1727684104_24590 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a This work provides an approach that automatically optimizes the component computations on graphics processing unit (GPU) devices from different vendors. The approach consists of a two-level optimization, where the first level considers the linear part of the computation for vectorization and applies mixed matrix formats to increase computational throughput further. Then, the second optimization level treats the combination of linear and non-linear parts as a black box and searches for the optimal configuration of parameters such as the degree of vectorization, the combination of matrix formats, and the group (of threads) sizes during parallel execution on GPU. Moreover, we also introduce constraints that reduce the optimization procedure’s execution time. Finally, we select three different types of components that could be representative to computational tasks in power system and perform our optimization approach on these kernels. The computational performance is compared with unoptimized baseline and sparse linear algebra library based implementations, result shows that our optimization leads to better performance and more efficient memory utilization. |
536 | _ | _ | |a 1122 - Design, Operation and Digitalization of the Future Energy Grids (POF4-112) |0 G:(DE-HGF)POF4-1122 |c POF4-112 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162) |0 G:(GEPRIS)450829162 |c 450829162 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Zhang, Junjie |0 P:(DE-Juel1)180837 |b 1 |e Corresponding author |u fzj |
700 | 1 | _ | |a Benigni, Andrea |0 P:(DE-Juel1)179029 |b 2 |u fzj |
773 | _ | _ | |a 10.1016/j.epsr.2024.110740 |g Vol. 235, p. 110740 - |0 PERI:(DE-600)1502242-0 |p 110740 - |t Electric power systems research |v 235 |y 2024 |x 0378-7796 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1028652/files/1-s2.0-S0378779624006266-main.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1028652/files/1-s2.0-S0378779624006266-main.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1028652/files/1-s2.0-S0378779624006266-main.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-700 |u https://juser.fz-juelich.de/record/1028652/files/1-s2.0-S0378779624006266-main.jpg?subformat=icon-700 |
909 | C | O | |o oai:juser.fz-juelich.de:1028652 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)187421 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)180837 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)179029 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Energiesystemdesign (ESD) |1 G:(DE-HGF)POF4-110 |0 G:(DE-HGF)POF4-112 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Digitalisierung und Systemtechnik |9 G:(DE-HGF)POF4-1122 |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
915 | p | c | |a DEAL: Elsevier 09/01/2023 |0 PC:(DE-HGF)0125 |2 APC |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-25 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ELECTR POW SYST RES : 2022 |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-09 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-09 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-09 |
920 | 1 | _ | |0 I:(DE-Juel1)ICE-1-20170217 |k ICE-1 |l Modellierung von Energiesystemen |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ICE-1-20170217 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|