
Electric Power Systems Research 235 (2024) 110740

A
0

Contents lists available at ScienceDirect

Electric Power Systems Research

journal homepage: www.elsevier.com/locate/epsr

Automatically optimized component model computation for power system
simulation on GPU✩

Marcel Mittenbühler a,1, Junjie Zhang a,b,∗,1, Andrea Benigni a,b,c

a IEK-10: Energy Systems Engineering, Forschungszentrum Jülich, 52428 Jülich, Germany
b RWTH Aachen University, 52056 Aachen, Germany
c JARA-Energy, Jülich 52425, Germany

A R T I C L E I N F O

Keywords:
Automatic code generation
Graphics processing unit
Parallel processing
Power system simulation
Sparse matrices

A B S T R A C T

This work provides an approach that automatically optimizes the component computations on graphics
processing unit (GPU) devices from different vendors. The approach consists of a two-level optimization, where
the first level considers the linear part of the computation for vectorization and applies mixed matrix formats
to increase computational throughput further. Then, the second optimization level treats the combination of
linear and non-linear parts as a black box and searches for the optimal configuration of parameters such as the
degree of vectorization, the combination of matrix formats, and the group (of threads) sizes during parallel
execution on GPU. Moreover, we also introduce constraints that reduce the optimization procedure’s execution
time. Finally, we select three different types of components that could be representative to computational tasks
in power system and perform our optimization approach on these kernels. The computational performance is
compared with unoptimized baseline and sparse linear algebra library based implementations, result shows
that our optimization leads to better performance and more efficient memory utilization.
1. Introduction

To meet the need for a global carbon neutrality goal by 2050, the
installation of renewable energy resources like photovoltaic and on-
and off-shore wind farms has been boosted in recent years. This trend
rapidly expands the power system’s size and complexity, giving more
challenges to power system simulation techniques.

A power system can be described by the differential equations of
the components coupled by electrical connections. This results in a
large system of differential equations that must be solved, usually nu-
merically. The increasing number of components results in a dramatic
growth of the problem size. At the same time, the fast dynamics brought
on by the power electronic devices make it increasingly necessary to
simulate the power system on a smaller time scale. These reasons have
led to the development of different parallel simulation approaches to
improve simulation performance.

The optimization technique proposed in this work is by exploiting
parallel programming techniques to improve the performance of GPU
code for power system component models automatically. We consider
the code is already implemented under certain parallel simulation
algorithms from the parallel-in-space family [1–3]. The main idea of

✩ This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grant 450829162.
∗ Corresponding author at: IEK-10: Energy Systems Engineering, Forschungszentrum Jülich, 52428 Jülich, Germany.
E-mail addresses: m.mittenbuehler@fz-juelich.de (M. Mittenbühler), ju.zhang@fz-juelich.de (J. Zhang), a.benigni@fz-juelich.de (A. Benigni).

1 M.M. and J.Z. contributed equally to this paper.

the parallel-in-space based methods is to decouple the solution of the
dynamic components and the solution of the network. This enables
parallel processing on hardware accelerators such as GPUs and field-
programmable gate arrays (FPGAs). In this work, we focused only
on the performance optimization on GPUs because different types of
hardware accelerators require different optimization techniques. The
main contributions of this work are:

• We use automatic vectorization techniques on linear algebraic
operations whilst not requiring global synchronization and main-
taining good data locality.

• We optimized memory access by considering a variety of matrix
formats and storage strategies. Different formats can be com-
bined in a single component kernel allowing more freedom in
performance optimization.

• We use automatic benchmarking and automatic code generation
technique to allow the performance being tuned automatically for
new components and on any compatible platform and hardware.
We also introduced a strategy to reduce exploration space so that
the benchmarking time is limited.
vailable online 28 June 2024
378-7796/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.epsr.2024.110740
Received 1 October 2023; Received in revised form 15 March 2024; Accepted 17 J
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

une 2024

https://www.elsevier.com/locate/epsr
https://www.elsevier.com/locate/epsr
mailto:m.mittenbuehler@fz-juelich.de
mailto:ju.zhang@fz-juelich.de
mailto:a.benigni@fz-juelich.de
https://doi.org/10.1016/j.epsr.2024.110740
https://doi.org/10.1016/j.epsr.2024.110740
http://creativecommons.org/licenses/by/4.0/


Electric Power Systems Research 235 (2024) 110740M. Mittenbühler et al.
The paper is organized as follows: Section 2 presents related ap-
proaches and positions our work among other methods. Section 3
introduces the background related to heterogeneous computing con-
cepts and execution models on the GPU. Section 4 describes our ap-
proach to process component models on the GPU with vectorization,
sparse formats, and automatic optimizations. Section 5 evaluates the
achieved speedup based on different component models and Section 6
summarizes the paper and discusses further work.

2. Related work

The application of parallel-in-space-based algorithms can be traced
back as far as the late 70s [4], where the authors split the solution
for the ordinary differential equations (ODEs) of synchronous machines
and the network equations in the transient stability analysis (TSA)
programs. More recent developments and implementations of parallel-
in-space type approaches are looking into using hardware accelerators
for dynamic simulations, e.g., GPUs [5–9] and FPGAs [10–13]. In [5],
the authors introduce a transformation on different component compu-
tations so that a single compute kernel can be used to execute them;
moreover, automatic code generation is applied to build the compute
kernel. In [6], the overall equations are grouped into linear and nonlin-
ear equation systems; afterwards, the linear and nonlinear systems are
decomposed separately and executed using different kernels. Therefore,
there are no specific component kernels but general kernels to compute
the fine-grained partitioned sub-networks in parallel.

In [8,9], kernels are implemented for different components and the
network separately so that instances of each type of component are
calculated in parallel in a single instruction/multiple threads (SIMT)
manner. Besides, kernels are implemented for the same type of sub-
components inside a component. For instance, in [7], the parallelization
is also applied on a single component, where the compute kernels are
designed to parallelize the computations of sub-modules in a Modular
Multi-Level Converter (MMC).

Automatic optimization is achieved by executing performance
benchmarks with different presets, and finally finding the best–
performing preset for the given program. This is needed since the
optimization of scientific computing code is platform-specific, so the
optimization for a given hardware architecture is likely to slow-down
on other platforms. Traditionally, the code would need to be tuned
for each architecture by experienced developers with domain-specific
knowledge [14]. Such process is time-consuming, and with the continu-
ous evolution of computer architecture, the process need to be repeated
constantly. Therefore, automatic tuners have been adopted in scientific
computing community for decades [14,15], where the ATLAS project
could be the best well-known example [14], which uses auto-tuning
technique to generate near-optimal code for dense basic linear algebra
subprograms (BLAS) routines.

3. Background

Heterogeneous computing frameworks such as OpenCL, CUDA or
HIP shares a similar concept in their hardware abstractions, which
contains three levels: device, compute unit (CU), and processing element
(PE). Illustration of the three levels as well as the memory hierarchy
are shown in Fig. 1. To map the hardware abstraction with the actual
hardware, take Nvidia GPU as an example, where the Nvidia streaming
multiprocessors (SMs) are the CUs, which is composed of the CUDA cores,
being their PEs; and the whole GPU is represented as a device.

During parallel execution, the finest process granularity is a work-
item (or thread in CUDA/HIP), which executes the code written in kernel
in parallel on the device; a collection of work-items that are scheduled
together and executed on the same CU is a work-group (or block in
CUDA/HIP), work-items in the same work-group can share data via
the local memory if needed. Finally, a collection of work-groups forms
NDRange (or grid in CUDA/HIP) which represents all work-items that is
spawned during execution of a kernel. An illustration of the execution
model is shown in Fig. 2.
2

Fig. 1. Hardware abstraction of heterogeneous computing frameworks like OpenCL,
CUDA or HIP. Illustration using terminology of OpenCL.

Fig. 2. Illustration of the parallel execution model [16], based on terminology from
OpenCL and CUDA/HIP.

4. Approach

The overall optimization process is illustrated in Fig. 3. By providing
the kernel as input to our optimizer, the optimizer executes bench-
marks and finally generate code with optimal execution parameters, i.e.
NDRange size, work-group layout, etc., automatically. The optimization
needs only to be executed once for a given set of models (kernel
optimization is independent from the model parameters and operating
points), and the outcome, i.e., optimized kernel code and execution
parameters, can be stored and reuse for later simulations.

The overall process consists of a two-level optimization process,
where the first level considers the possibility of vectorization inside
component kernels and applies mixed matrix formats with different
matrix storage strategies to increase the computational throughput
further. Therefore, the second optimization level treats the combination
of linear and nonlinear parts as a black box and searches for the optimal
configuration of parameters such as the degree of vectorization, the
combination of matrix formats, and the group (of threads) sizes during
parallel execution on GPU.

To perform vectorization inside component kernels, we take the
discretized ODE of the components and separate them into linear



Electric Power Systems Research 235 (2024) 110740M. Mittenbühler et al.

𝑥

Fig. 3. Illustration of the overall optimization process.
and nonlinear contributions. The computation of the model’s linear
part is based on matrix–vector multiplication (mv) operations. A first
optimization level can already be achieved by applying vectorization
on the mv operations. Moreover, since the mv operation is limited by
memory transfer speed, applying sparse matrix formats boosts the per-
formance when the associated matrices are sparse [17]. The nonlinear
part includes any other operations that is not or difficult to be treated
as linear algebraic. By combining the two optimization levels, our
implementation provides a framework that automatically benchmarks
different parameters and selects the best-performing one. Furthermore,
we also introduce an algorithm in Section 4.3 to reduce the exploration
space during automatic benchmarking by constraining the possible
parameters.

4.1. Vectorization

Efficient vectorization requires a regular structure in computations
to be efficient. A typical example of such a regular structure is linear
algebra operations. In fact, GPUs are mostly designed and optimized for
these operations, and automatic vectorization can be easily achieved by
processing each dimension with a different thread.

Automatic vectorization is difficult to apply to power system com-
ponents as they mostly contain nonlinearities. Usually, after discretiza-
tion, a large portion of the required computations can be formulated
into linear algebra operations with a small nonlinear part remaining.
Therefore, processing a vast part of the nonlinear component in parallel
is possible, whilst a residual part is computed sequentially.

To perform vectorization inside component kernels, the ODE of the
components are reformulated similarly to a state–space representation
as

̇ (𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝜒�̇�(𝑡, 𝑥(𝑡), 𝑢(𝑡)) (1)

𝑦(𝑡) = 𝐶(𝑡)𝑥(𝑡) +𝐷(𝑡)𝑢(𝑡) + 𝜒𝑦(𝑡, 𝑥(𝑡), 𝑢(𝑡)). (2)

with time-dependent input 𝑢 ∈ R𝑁𝑢 , state 𝑥 ∈ R𝑁𝑥 , output 𝑦 ∈ R𝑁𝑦 ,
component matrices 𝐴 ∈ R𝑁𝑥×𝑁𝑥 , 𝐵 ∈ R𝑁𝑥×𝑁𝑢 , 𝐶 ∈ R𝑁𝑦×𝑁𝑥 , 𝐷 ∈
R𝑁𝑦×𝑁𝑢 , and nonlinearities 𝜒�̇� and 𝜒𝑦. Fig. 4 visualizes the interactions
of the linear contributions in a block diagram. Effectively, this splits the
component computation into linear and nonlinear contributions where
the linear contribution can be seen as a state space model.

The nonlinear computations of these functions are treated as a
black box, and are almost impossible to vectorize efficiently. Therefore,
each component’s nonlinearity is processed by one thread. This also
simplifies the implementation as parallelism can be ignored. However,
3

Fig. 4. Block diagram of the model described by (1) and (2) when setting the
nonlinearities 𝜒�̇� = 𝜒𝑦 = 0.

it is still worth to be noted that this sequential execution only applies to
a single component instance, the nonlinear parts of different component
instances are still computed in parallel. In practice, nonlinearities are
computed by callbacks that are invoked between each computation in
the state space model as shown in Alg. 1. These callbacks can alter
the states, inputs, and outputs for maximal flexibility. Moreover, it is
possible to introduce additional arguments to the kernel when needed.
For example, a turbine may have a mechanical simulation alongside
an electrical one with a shared buffer. With the additional arguments,
sharing the turbine frequency with the electrical simulation would be
possible.

Algorithm 1 Pseudo-code for linear part of component kernels.
Nonlinear part can be added as additional callbacks anywhere.
1: PreCallback(𝑡, 𝑥, 𝑦, 𝑢, ...𝑎𝑟𝑔𝑠)
2: �̇� ← 𝐴𝑥 + 𝐵𝑢
3: DerivativeCallback(�̇�, 𝑡, 𝑥, 𝑦, 𝑢, ...𝑎𝑟𝑔𝑠)
4: 𝑥 ← Integrate(𝑥, �̇�, 𝑡, 𝑠𝑡𝑒𝑝)
5: NextStateCallback(𝑡, 𝑥, 𝑦, 𝑢, ...𝑎𝑟𝑔𝑠)
6: 𝑦 ← 𝐶𝑥 +𝐷𝑢
7: OutputCallback(𝑡, 𝑥, 𝑦, 𝑢, ...𝑎𝑟𝑔𝑠)

4.2. Memory access

The main computation of the linear part of components is matrix–
vector multiplication which is largely limited by the bandwidth of the
device [18]. By reducing the amount of data that has to be transferred,
the overall computation can be accelerated. Moreover, reducing mem-
ory requirements allows storing more components in memory, thereby
enabling the simulation of larger systems.



Electric Power Systems Research 235 (2024) 110740M. Mittenbühler et al.
A multitude of different sparse formats have been explored in
the past with various kernel implementations [17,19–22]. All formats
have in common that they try to minimize the number of stored zero
elements. The main difference is the method used to store the positions
of the remaining non-zero elements. Each format performs differently
depending on the sparsity pattern of the matrix and the architecture of
the GPU.

Of course, the nonzero structure of the component matrices can vary
vastly, although they are for the same component. Thus, each matrix
can have its own format in our implemented kernels. Moreover, we also
convert matrices that are zero or the identity matrix to a scalar, so that
they do not necessarily to be stored as matrices.

When considering matrix storage, except utilizing different sparse
formats like ELLPACK format (ELL) [23], compressed sparse row (CSR)
[24], Coordinate list (COO), etc., we proposed following strategies to
store the matrices of multiple component instances. Nevertheless, new
sparse formats and strategies can be easily integrated.

4.2.1. Block-diagonal storage
The state space equations are decoupled; therefore, the equations

for all component instances can be combined into one. This results in
block diagonal coefficient matrices that can be efficiently stored using
sparse formats. Each thread can then compute the required rows of the
matrix–vector multiplication.

4.2.2. Concatenated storage
Not all formats can be stored efficiently in a block diagonal form.

For example, storing a block diagonal matrix in a dense format is
inefficient. Moreover, some other formats also perform better, or even
require (e.g., COO), to store instance individually. In this case, the
matrices for each instance are encoded into certain matrix format
(dense or sparse format) and then concatenated into one buffer, an
additional buffer is used to locate the individual instances.

4.2.3. Pattern storage
The nonzero pattern of the component matrices is usually deter-

mined by the algebraic description of the component’s behavior, imply-
ing that it suffices to store this pattern once and reuse it for all instances
of that component. By just storing the pattern, and allowing instances
to have different values, this reduces memory transfers significantly
as only the values of the component matrices are transferred, not the
pattern. The downside of this approach is that the component must
have a known and fixed nonzero pattern that can be determined during
optimization and remains fixed in simulation, but it is usually the case
(see Fig. 5).

4.3. Exploration space reduction and optimization

The linear part is vectorized, allowing multiple threads executing
the same mv operation. Normally, one thread is assigned to process
each row, however, when there are still resource available, i.e., if there
are more threads available than the number of rows, then multiple
threads process each row simultaneously. In this case, the element-wise
products in each row are summed using a binary reduction.

To quantify the constraint for exploration space reduction, we first
limit the number of threads per row to be a power of two. Then we
introduce the number of rows per thread 𝑁𝑟 and the number of threads
per row during vectorized mv execution 𝑁𝑣, as shown in Fig. 6 as

𝑁𝑟 =
⌈𝑁𝑚𝑁𝑗

𝑁𝑔

⌉

,

𝑁𝑣 = 2

⌊

log2
𝑁𝑔

𝑁𝑚𝑁𝑗

⌋

,

with 𝑁𝑚 rows per matrix, a group size of 𝑁𝑔 , and 𝑁𝑗 components per
group. Furthermore, the maximal number of threads per row �̂�𝑣 for a
matrix with 𝑁𝑛 columns is

�̂� = 2⌈𝑁𝑛⌉.
4

𝑣

Fig. 5. The pattern storage strategy. Assuming the nonzero pattern for certain com-
ponent does not change during simulation, the nonzero pattern and values are stored
separately. Multiple instances of the same component type shares the same storage
pattern vector and maps to different value vectors.

Fig. 6. Illustration of two of the vectorization parameters 𝑁𝑣 and 𝑁𝑟 on the matrix–
vector multiplication (mv). When more than one thread work on the same row, a
parallel binary reduction is used to collect the sum for each row.

The optimization for component kernels have six degrees of free-
dom. The matrix format choice for the component matrices introduces
four parameters. In addition, a kernel should be built for a certain group
size 𝑁𝑔 on the GPU, i.e., the number of SIMT threads working in sync.
Finally, the number of instances processed by one group 𝑁𝑗 must be
selected.

By design, the device limits the group size 𝑁𝑔 to 1 ≤ 𝑁𝑔 ≤ �̂�𝑔
with the upper limit group size �̂�𝑔 . Furthermore, the group size should
be a multiple of two for efficient scheduling. For example, the NVIDIA
A100 supports group sizes of up to 1024 threads, resulting in just 10
efficiently usable group sizes. Also, we assume that 1 ≤ 𝑁𝑗 ≤ 𝑁𝑔 –
i.e., each thread computes at most one component – to stay within the
regime of thin threads for better work distribution and less memory
consumption [25].



Electric Power Systems Research 235 (2024) 110740M. Mittenbühler et al.
Fig. 7. Visualization of the optimization flow. The first phase benchmarks each part
isolated. The second part then combines the results to predict runtimes for combinations
and benchmarks the ones with the lowest predicted runtimes.

Our goal is to minimize idle time among threads, as this can increase
computation times. Thus, we maximize the number of components
per group 𝑁𝑗 so that the work performed per thread stays constant.
Effectively, this should remove inefficient parameter sets. In practice,
we loop over all 𝑁𝑗 for a given group size 𝑁𝑔 and only benchmark
those where 𝑁𝑗 + 1 results in a different 𝑁𝑟 or 𝑁𝑣.

With these prerequisites, we can define a function 𝑓

𝑓 ∶ (𝑁𝑚, 𝑁𝑛, �̂�𝑔) → {(𝑁𝑔 , 𝑁𝑗 )} (3)

with 𝑁𝑚 rows and 𝑁𝑛 columns of the considered matrix that maps the
external parameters given by the matrix dimensions and the GPU to
a set of parameters fulfilling the above-mentioned constraints. As four
matrices describe each component, the set of suitable parameters  is
given by

 =
⋃

𝑥∈{𝐴,𝐵,𝐶,𝐷}
𝑓 (𝑁 (𝑥)

𝑚 , 𝑁 (𝑥)
𝑛 , �̂�𝑔). (4)

For the parameter selection, we split the optimization into a coarse
optimization that benchmarks one part at a time and a fine-grained
optimization to select the best combination of parameters as shown in
Fig. 7. This two-step process significantly lowers the required optimiza-
tion time.

4.3.1. Coarse optimization
For the coarse optimization, we benchmark each component of Alg.

1 individually to try out each format for each matrix. Assume 𝐹 is the
matrix format, and 𝑥 identifies the matrix, then the runtime for the
matrix–vector multiplication is 𝑡(𝑥)𝐹 and depends on the total number
of instances 𝑁𝑖, as well as the group size 𝑁𝑔 , and the number of
components per group 𝑁𝑗 . We determine this by running a benchmark,
as runtime prediction is generally a hard problem [26–28]. The same
benchmark is performed only with the nonlinearities to get 𝑡(𝜒𝑥) and
𝑡(𝜒𝑦).

4.3.2. Fine optimization
In general, the optimization goal is to minimize the kernel’s run-

time. This can be estimated by assuming the runtime 𝑡 of the combined
kernel consists of the runtimes of the parts benchmarked in the coarse
optimization as

𝑡 ≡ 𝑡(𝐴) + 𝑡(𝐵) + 𝑡(𝐶) + 𝑡(𝐷) + 𝑡(𝜒𝑥) + 𝑡(𝜒𝑦). (5)

Using this, we find the parameter configurations expected to per-
form best. Nevertheless, this is only an approximation, as some other
influences from the combination may change the runtime slightly.
Moreover, predicting runtimes on GPU is generally difficult, imprecise,
or computationally expensive. Therefore, we benchmark some of the
predicted configurations and select the one with the lowest runtime.
5

Fig. 8. Illustration of the library implementation to represent computations in generic
solvers, e.g. in [29].

5. Evaluation

We evaluate our approach using three representative components
with different models — in particular, we consider a distributed gener-
ation (DG) inverter, an electrolyzer, and a synchronous machine. The
time integration of (1) uses the explicit Euler method; however, an
implementation for RK-4 also exists. The correctness of our kernels for
all matrix formats, group sizes, and components per group was verified
with negligible computation errors.

Simulations in this section are compiled and executed on a server
with two AMD EPYC 7H12 CPUs (2.6GHz base clock frequency, 64
cores each, hyper-threading disabled); 256 GB DDR4 main memory;
one Nvidia A100-40 GB GPU with 40 GB HBM2 global memory, and
one AMD MI100 GPU with 32 GB global memory.

To evaluate the performance of the optimized kernels, we prepare
two alternative implementations to compare:

(1) the library implementation: Previous works on power sys-
tem simulation with GPU show that component computations can be
transformed and aggregated into a unified kernel. Moreover, general
purpose numerical solver libraries [29,30] will usually also aggregate
all differential equations and solve simultaneously, e.g., by calculating
the Jacobian, and computed with the help of a BLAS library. An
example to this is the SUNDIALS library with GPU acceleration [29].
The benefit of using general solvers is that the user, or modeler, needs
less concern regarding computational performance, since the computa-
tions are relying on other linear algebra libraries. However, this poses
difficulty in implementing new models or power system specific models
that are essentially an algorithms, e.g., specific controllers, automation
systems, etc. Therefore, to represent the computation resulted from
this approach, the linear part of the considered component models
are aggregated into a single state–space representation, where the
coefficient matrices of each component are placed along the diagonal
of the aggregated coefficient matrix, as shown in Fig. 8. The numerical
integration will then be processed by a vendor-supplied sparse BLAS
library – so that the many off-diagonal zeros do not affect the com-
putation – such as cuSparse or hipSparse. These libraries are highly
optimized as they are utilized in many simulation environments. It
needs to be pointed out that for simplicity, the nonlinear part of each
model is ignored for this implementation.



Electric Power Systems Research 235 (2024) 110740M. Mittenbühler et al.

𝑥

Fig. 9. Distributed generation inverter model [31,32].

In addition, to ensure a fair comparison, since the tested sparse
libraries only support fixed sparse matrix format throughout the com-
putation, prior to each benchmark, we tested among different matrix
formats to find the most performant format for each library and use it
in that benchmark.

(2) The baseline implementation: We take the kernel implementa-
tions with the formulation in Section 4.1, i.e., the reformulation into
a linear and nonlinear part, without applying any optimization. The
group size and components per group are set to 𝑁𝑔 = 32 and 𝑁𝑗 = 32,
respectively. Such group size matches the recommended default group
size on the considered devices as it matches the SIMT width of one
compute unit. This is a versatile configuration that should work well in
many cases.

The kernels for the baseline implementation as well as the optimized
code uses OpenCL C; library implementations only need to invoke the
related Application Programming Interface (API) calls from the host,
which is implemented in C++ in our case.

5.1. Component models

5.1.1. Distributed generation inverter
We take the DG inverter introduced in [31]; it is modeled by an

averaged inverter model with a grid following control and neglects the
switching dynamics. The kernel is also implemented in our previous
work [32]. Such model depth is already sufficient for a majority of
test cases [33] involving power electronics. The controller and circuit
representation of the inverter model is shown in Fig. 9. The input
three-phase alternating current (AC) signal to the controllers is first
transformed into the 𝑑𝑞 domain via a Park transform. The controller
can be divided into three main parts: a phase-locked loop (PLL) tracks
the system’s angular frequency; an average power calculation block
that calculates the current output power, and two PI controllers that
track reference power set points by controlling the output voltage of
the converter.

The converter controllers, excluding the Park transform block, can
be formulated via the following state–space formulation:

̇ = 𝐴𝑥 + 𝐵(𝑥)𝑢, (6)

𝑦 = 𝐶𝑥 +𝐷𝑢, (7)

where the 𝐵 matrix is dependent on the state 𝑥. This is due to the av-
erage power calculation block that performs multiplications over states
(𝑣𝑐−𝑑𝑞 and 𝑖𝑔−𝑑𝑞) to calculate the power, thus introducing non-linearity
in the state–space representation.

5.1.2. Electrolyzer
We use the electrolyzer model in [34], where the electrolyzer is

considered to be connected with a three-phase interleaved buck con-
verter. The electrolyzer is modeled with Randles–Warburg (RW) cell
model, and the buck converter uses the generalized state–space average
model introduced in [35]. The reason for selecting an electrolyzer
model for the benchmark is twofold: first, electrolyzers are gaining
more attention due to the increasing interest in hydrogen; second, the
6

Fig. 10. Electrolyzer with three-phase interleaved buck converter [34,35].

main computational load in this model we selected is the interleaved
buck converter, therefore, it could be used to partly represent the
computational tasks when simulating a power-electronics-based system
with switching dynamics (see Fig. 10).

5.1.3. Synchronous machine
We take the machine model in [36] with saturation ignored, and

its dq0-axis equivalent circuits are shown in Fig. 11. Similar to the
previous inverter model, the machine is modeled in the 𝑑𝑞 frame
as well. The machine model also introduces non-linearity due to the
coupling of 𝑑− and 𝑞-axis and between electromagnetic and mechanical
equations. The overall equation set can be represented by:

�̇� = 𝑓 (𝛹,𝜔𝑟, 𝑈 ), (8)

𝛿𝑟 = 𝑓 (𝜔𝑟), (9)

�̇�𝑟 = 𝑓 (𝛹, 𝐼, 𝜔𝑟), (10)

0 = 𝑔(𝛹, 𝐼). (11)

where 𝛹 is a 7 × 1 vector of flux linkage; 𝑈 , 𝐼 are vectors of stator
and rotor voltages and currents with the same length, respectively. 𝜔𝑟
is the mechanical angular frequency of the rotor.

5.2. Performance evaluation

We benchmarked our optimized component kernels against the
library and the baseline implementation by performing numerical inte-
gration with a simple Euler forward method. The measured execution
time for different component types and different component counts are
shown in Fig. 12, including a benchmark of simulating a combination
with three types of components together with an equal number of each
type. The speedup of our optimized kernels to the library implemen-
tation is between 1.3 and 6.7 times and to the baselines by up to
10.2 times, which shows that the optimized kernels outperform the
compared implementations by some margin.

Compared with the library implementation, the customized compo-
nent kernels, i.e. the baseline and optimized, have a reduced number
of kernel launches, as our kernels perform the whole computation
in a single kernel launch although with part of computations being
computed sequentially, i.e. nonlinear contributions, whereas the library
implementation requires separated launches e.g. for updating the states
and outputs. This results in better cache coherence and less overhead
in our implementations. Nevertheless, the library implementation still
outperforms the baselines when the problem size is large enough.

In all test cases of the library implementation, the NVIDIA A100
outperformed the AMD MI100. It can be attributed to the better opti-

mization with the cuSparse library than the hipSparse library. However,



Electric Power Systems Research 235 (2024) 110740M. Mittenbühler et al.

i
w
b

k
b
i
e
T
T
s
l

5

m
s
p
t
e
h
t
l
s
f
G
o
r
s
c
t
b

m
o

s
b
m
s
e

c
a
d
o

s
m
e
t

C

g
o
a
V
&
M
–

D

c
i

D

A

Fig. 11. The dq0-axis equivalent circuit of the synchronous machine [36].

t needs to be noted that the A100 GPU has higher memory band-
idth, therefore, it gains more advantage in the linear algebra related
enchmarks which are mainly memory-bounded operations.

Finally, we performed a roofline analysis [37] with the optimized
ernels. This relates the computational intensity, given by FLOP per
yte transferred, to the achievable performance. The plot is shown
n Fig. 13 and shows that especially high component counts lead to
fficient utilization of the hardware and close to the peak performance.
he devices are likely not fully utilized for lower component counts.
his is because runtime overheads, such as scheduling time, become a
ignificant factor compared to light computational load, leading to a
arge gap between peak and actual performance.

.3. Memory consumption

Reformulation of the components inevitably leads to increased
emory consumption, which could be a limiting factor for very large

ystems. We tracked the required buffer sizes needed for each com-
onent to perform numerical integration and compared them between
he optimized and library implementation, as shown in Fig. 14. The
lectrolyzer model consumes the most memory per component since it
as a more detailed converter model considering switching dynamics;
he DG inverter considers only controller dynamics and therefore needs
ess memory but is still larger than the synchronous machine. Results
how that our optimizer finds different matrix format combinations
or different problem sizes: when the component count is small, the
PU memory bandwidth is usually not saturated, hence leading our
ptimization to choose more performant formats, including dense,
egardless of memory usage, and the increasing memory usage clearly
hows that dense format was used in some cases. With the growing
omponent count, the GPU memory bandwidth is eventually saturated,
herefore, the optimizer tends to find format combinations that provide
7

etter compression on the matrices.
6. Conclusion

This work provides an approach to automatically accelerate the
numeric integration of component models for power system simulations
on GPU. Our approach automatically exploits the data parallelism of
the GPU by introducing vectorization and different matrix storage
strategy with mixed matrix formats into the component computation.
The approach can be flexibly applied to kernels for any new compo-
nents or be applied to existing compatible implementations to improve
performance.

We demonstrated that our approach outperforms the aggregated
model approach based on sparse linear algebra libraries with a speedup
between 1.3 and 6.7 times, and up to 10 times compared to the unopti-

ized baseline implementation, demonstrating the effectiveness of our
ptimizations.

With the growing size and complexity of the power system, or when
pecific study cases require detail modeling, component models can
e more complex. Therefore, memory bandwidth and, in some cases,
emory volume will become a limiting factor. The memory footprint

hown in Section 5.3 suggests that our approach could increase the
fficiency in memory utilization for component computations.

Nevertheless, it needs to be pointed out that the optimization pro-
edure takes a few minutes per component since it depends on many
utomatically executed benchmarks, and need to be re-executed for
ifferent problem sizes, indicating further improvements needed, e.g.,
n the optimization algorithm.

We plan to consider different explicit and implicit integration
chemes other than the explicit Euler and RK-4 schemes. Moreover, one
ay consider the vectorization potential of the nonlinearities to achieve

ven better performance. Including more specialized matrix formats for
he component matrices may increase performance further.

RediT authorship contribution statement

Marcel Mittenbühler: Conceptualization, Data curation, Investi-
ation, Methodology, Software, Validation, Visualization, Writing –
riginal draft. Junjie Zhang: Conceptualization, Data curation, Formal
nalysis, Investigation, Methodology, Resources, Software, Supervision,
alidation, Visualization, Writing – original draft, Writing – review
editing. Andrea Benigni: Conceptualization, Funding acquisition,

ethodology, Project administration, Resources, Supervision, Writing
review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

ppendix

See Tables 1 and 2.



Electric Power Systems Research 235 (2024) 110740M. Mittenbühler et al.

t

Fig. 12. Execution time for performing numerical integration with different component models and component counts, with simulating each type of component along or with all
ypes combined.
Table 1
Optimization result for Nvidia A100-40 GB GPU.

Component #Components Group #Components Matrix format with storage strategy

size per group A B C D

Inverter

512 16 2 CDiaa CDiaa Dense-cat ELLa

2048 32 32 Dense-cat Dense-cat Dense-cat Dense-cat
8192 128 32 ELLa ELLa CDiaa ELLa

32 768 128 64 ELLa ELLa ELLa ELLa

131 072 64 40 ELLa ELLa ELLa ELLa

524 288 32 20 ELLa ELLa ELLa ELLa

SyncMachine

512 128 14 CDiaa Diaa ELLa –
2048 256 28 CDiaa CDiaa ELLa –
8192 256 28 CDiaa Diaa CDiaa –
32 768 128 64 ELLa ELLa ELLa –
131 072 64 32 ELLa Dia-BD CSRa –
524 288 128 64 ELLa CDiaa ELLa –

Electrolyzer

512 256 12 ELL-BD Dense-cat CSRa –
2048 128 6 Diaa ELL-BD CSR-BD –
8192 128 12 ELL-BD ELL-BD CSR-BD –
32 768 256 48 CSR-BD ELL-BD CSR-BD –
131 072 64 6 CSR-BD CDiaa CSRa –
524 288 256 48 CSR-BD CSR-BD CSRa –

-cat: concatenated storage.
-BD: block diagonal storage.
a Pattern storage.
Table 2
Optimization result for AMD MI100 GPU.

Component #Components Group #Components Matrix format with storage strategy

size per group A B C D

Inverter

512 32 4 ELLa ELLa ELLa ELLa

2048 256 32 ELLa ELLa ELLa ELLa

8192 256 32 ELLa ELLa CSRa ELLa

32 768 256 96 ELLa ELLa ELLa ELLa

131 072 128 48 ELLa ELLa ELLa ELLa

524 288 128 32 ELLa ELLa ELLa CSRa

SyncMachine

512 64 7 CDiaa Diaa ELLa –
2048 64 7 CDiaa ELLa ELLa –
8192 256 28 ELLa Diaa ELLa –
32 768 256 96 ELLa Diaa ELLa –
131 072 128 28 ELLa CSRa ELLa –
524 288 256 28 CSRa CDiaa ELLa –

Electrolyzer

512 64 3 ELLa Dense-cat CSRa –
2048 128 6 ELLa ELLa CSRa –
8192 256 12 ELLa CSRa CSRa –
32 768 256 12 ELLa CSRa CSRa –
131 072 256 12 ELLa CSRa CSRa –
524 288 128 3 CSRa ELLa CSRa –

-cat: concatenated storage.
-BD: block diagonal storage.
a Pattern storage.
8



Electric Power Systems Research 235 (2024) 110740M. Mittenbühler et al.

p
c

Fig. 13. Performance of the optimized kernels in a roofline plot to relate kernel
erformance to peak performance. The size of the dots relates to the number of
omponents.

Fig. 14. Memory consumption per component on the NVIDIA A100 GPU of different
component models, for our and the library implementation. Lower limit is calculated
by considering minimum number of parameters required for each component.

References

[1] A. Benigni, A. Monti, A parallel approach to real-time simulation of power
electronics systems, IEEE Trans. Power Electron. 30 (9) (2015) 5192–5206.

[2] C. Dufour, J. Mahseredjian, J. Bélanger, A combined state-space nodal method
for the simulation of power system transients, IEEE Trans. Power Deliv. 26 (2)
(2011) 928–935.

[3] V. Jalili-Marandi, V. Dinavahi, SIMD-based large-scale transient stability simu-
lation on the graphics processing unit, IEEE Trans. Power Syst. 25 (3) (2010)
1589–1599.

[4] V. Brandwajn, Synchronous Generator Models for the Simulation of Electromag-
netic Transients (Ph.D. thesis), University of British Columbia, 1977.

[5] Y. Song, Y. Chen, S. Huang, Y. Xu, Z. Yu, W. Xue, Efficient GPU-
based electromagnetic transient simulation for power systems with thread-
oriented transformation and automatic code generation, IEEE Access 6 (2018)
25724–25736.

[6] Z. Zhou, V. Dinavahi, Fine-grained network decomposition for massively parallel
electromagnetic transient simulation of large power systems, IEEE Power Energy
Technol. Syst. J. 4 (3) (2017) 51–64.

[7] N. Lin, V. Dinavahi, Exact nonlinear micromodeling for fine-grained parallel EMT
simulation of MTDC grid interaction with wind farm, IEEE Trans. Ind. Electron.
66 (8) (2019) 6427–6436.

[8] Z. Zhou, V. Dinavahi, Parallel massive-thread electromagnetic transient
simulation on GPU, IEEE Trans. Power Deliv. 29 (3) (2014) 1045–1053.

[9] V. Jalili-Marandi, Z. Zhou, V. Dinavahi, Large-scale transient stability simulation
of electrical power systems on parallel GPUs, IEEE Trans. Parallel Distrib. Syst.
23 (7) (2012) 1255–1266.
9

[10] M. Milton, A. Benigni, J. Bakos, System-level, FPGA-based, real-time simulation
of ship power systems, IEEE Trans. Energy Convers. 32 (2) (2017) 737–747.

[11] M. Milton, A. Benigni, Latency insertion method based real-time simulation of
power electronic systems, IEEE Trans. Power Electron. 33 (8) (2018) 7166–7177.

[12] M. Milton, A. Benigni, A. Monti, Real-time multi-FPGA simulation of energy
conversion systems, IEEE Trans. Energy Convers. (2019) 1.

[13] L. Zhang, J. Liu, W. Qi, Q. Chen, R. Long, S. Quan, A parallel modular computing
approach to real-time simulation of multiple fuel cells hybrid power system, Int.
J. Energy Res. 43 (10) (2019) 5266–5283.

[14] R. Clint Whaley, A. Petitet, J.J. Dongarra, Automated empirical optimizations of
software and the ATLAS project, Parallel Comput. 27 (1) (2001) 3–35.

[15] K. Sato, H. Takizawa, K. Komatsu, H. Kobayashi, Automatic tuning of CUDA exe-
cution parameters for Stencil Processing, in: K. Naono, K. Teranishi, J. Cavazos,
R. Suda (Eds.), Software Automatic Tuning: from Concepts to State-of-the-Art
Results, Springer, New York, NY, 2010, pp. 209–228.

[16] D. Kirk, W.-m.W. Hwu, Programming Massively Parallel Processors: A Hands-on
Approach, second ed., Elsevier, Morgan Kaufmann, Amsterdam, 2013.

[17] N. Bell, M. Garland, Efficient Sparse Matrix-Vector Multiplication on CUDA, Tech.
Rep., Nvidia Technical Report NVR-2008-004, Nvidia Corporation, 2008.

[18] G.I. Goumas, K. Kourtis, N. Anastopoulos, V.P. Karakasis, N. Koziris, Performance
evaluation of the sparse matrix-vector multiplication on modern architectures, J.
Supercomput. 50 (2009) 36–77.

[19] B.-Y. Su, K. Keutzer, clSpMV: A cross-platform OpenCL SpMV framework
on GPUs, in: Proceedings of the 26th ACM International Conference on
Supercomputing, 2012, pp. 353–364.

[20] E.F. D’Azevedo, M.R. Fahey, R.T. Mills, Vectorized sparse matrix multiply for
compressed row storage format, in: International Conference on Computational
Science, Springer, 2005, pp. 99–106.

[21] J.L. Greathouse, K. Knox, J. Poła, K. Varaganti, M. Daga, Clsparse: A vendor-
optimized open-source sparse blas library, in: Proceedings of the 4th International
Workshop on OpenCL, 2016, pp. 1–4.

[22] M. Naumov, L. Chien, P. Vandermersch, U. Kapasi, Cusparse library, in: GPU
Technology Conference, 2010.

[23] D.R. Kincaid, T.C. Oppe, D.M. Young, ITPACKV 2D User’s Guide, Tech. Rep.,
Texas Univ., Austin, TX (USA). Center for Numerical Analysis, 1989.

[24] W. Liu, B. Vinter, CSR5: An efficient storage format for cross-platform sparse
matrix-vector multiplication, in: Proceedings of the 29th ACM on International
Conference on Supercomputing, 2015, pp. 339–350.

[25] G. Klingbeil, R. Erban, M. Giles, P.K. Maini, Fat versus thin threading approach
on gpus: Application to stochastic simulation of chemical reactions, IEEE Trans.
Parallel Distrib. Syst. 23 (2) (2011) 280–287.

[26] J.W. Choi, A. Singh, R.W. Vuduc, Model-driven autotuning of sparse
matrix-vector multiply on GPUs, ACM Sigplan Not. 45 (5) (2010) 115–126.

[27] P. Guo, L. Wang, P. Chen, A performance modeling and optimization analysis
tool for sparse matrix-vector multiplication on GPUs, IEEE Trans. Parallel Distrib.
Syst. 25 (5) (2013) 1112–1123.

[28] B.C. Lee, R.W. Vuduc, J.W. Demmel, K.A. Yelick, Performance models for
evaluation and automatic tuning of symmetric sparse matrix-vector multiply, in:
International Conference on Parallel Processing, 2004. ICPP 2004, IEEE, 2004,
pp. 169–176.

[29] C.J. Balos, D.J. Gardner, C.S. Woodward, D.R. Reynolds, Enabling GPU acceler-
ated computing in the SUNDIALS time integration library, Parallel Comput. 108
(2021) 102836.

[30] S. Abhyankar, J. Brown, E.M. Constantinescu, D. Ghosh, B.F. Smith, H. Zhang,
PETSc/TS: A modern scalable ODE/DAE Solver Library, 2018.

[31] N. Pogaku, M. Prodanovic, T.C. Green, Modeling, analysis and testing of au-
tonomous operation of an inverter-based microgrid, IEEE Trans. Power Electron.
22 (2) (2007) 613–625.

[32] J. Zhang, M. Mittenbuehler, L. Razik, A. Benigni, Parallel simulation of power
systems with high penetration of distributed generation using GPUs and OpenCL,
in: 2022 IEEE 13th International Symposium on Power Electronics for Distributed
Generation Systems (PEDG), 2022, pp. 1–6.

[33] G. De Carne, G. Lauss, M.H. Syed, A. Monti, A. Benigni, S. Karrari, P.
Kotsampopoulos, M.O. Faruque, On modeling depths of power electronic circuits
for real-time simulation–a comparative analysis for power systems, IEEE Open
Access J. Power Energy 9 (2022) 76–87.

[34] H. Zhang, Y. Lu, J. Zhang, A. Benigni, Real-time simulation of an electrolyzer
with a diode rectifier and a three-phase interleaved buck converter, in: 2022 IEEE
13th International Symposium on Power Electronics for Distributed Generation
Systems (PEDG), 2022, pp. 1–6.

[35] P. Azer, A. Emadi, Generalized state space average model for multi-phase
interleaved buck, boost and buck-boost DC-DC converters: Transient, steady-state
and switching dynamics, IEEE Access 8 (2020) 77735–77745.

[36] P. Kundur, N.J. Balu, M.G. Lauby, Power System Stability and Control, in: EPRI
Power System Engineering Series, McGraw-Hill, New York, 1994.

[37] S. Williams, A. Waterman, D. Patterson, Roofline: An insightful visual per-
formance model for multicore architectures, Commun. ACM 52 (4) (2009)
65–76.

http://refhub.elsevier.com/S0378-7796(24)00626-6/sb1
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb1
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb1
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb2
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb2
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb2
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb2
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb2
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb3
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb3
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb3
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb3
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb3
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb4
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb4
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb4
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb5
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb5
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb5
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb5
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb5
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb5
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb5
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb6
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb6
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb6
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb6
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb6
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb7
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb7
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb7
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb7
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb7
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb8
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb8
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb8
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb9
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb9
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb9
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb9
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb9
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb10
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb10
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb10
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb11
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb11
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb11
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb12
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb12
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb12
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb13
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb13
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb13
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb13
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb13
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb14
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb14
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb14
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb15
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb15
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb15
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb15
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb15
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb15
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb15
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb16
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb16
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb16
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb17
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb17
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb17
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb18
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb18
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb18
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb18
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb18
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb19
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb19
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb19
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb19
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb19
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb20
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb20
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb20
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb20
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb20
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb21
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb21
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb21
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb21
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb21
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb22
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb22
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb22
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb23
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb23
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb23
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb24
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb24
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb24
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb24
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb24
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb25
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb25
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb25
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb25
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb25
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb26
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb26
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb26
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb27
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb27
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb27
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb27
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb27
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb28
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb28
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb28
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb28
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb28
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb28
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb28
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb29
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb29
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb29
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb29
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb29
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb30
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb30
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb30
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb31
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb31
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb31
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb31
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb31
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb32
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb32
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb32
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb32
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb32
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb32
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb32
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb33
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb33
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb33
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb33
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb33
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb33
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb33
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb34
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb34
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb34
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb34
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb34
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb34
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb34
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb35
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb35
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb35
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb35
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb35
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb36
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb36
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb36
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb37
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb37
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb37
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb37
http://refhub.elsevier.com/S0378-7796(24)00626-6/sb37

	Automatically optimized component model computation for power system simulation on GPU
	Introduction
	Related Work
	Background
	Approach
	Vectorization
	Memory Access
	Block-Diagonal storage
	Concatenated storage
	Pattern storage

	Exploration space reduction and optimization
	Coarse Optimization
	Fine Optimization


	Evaluation
	Component Models
	Distributed generation inverter
	Electrolyzer
	Synchronous Machine

	Performance Evaluation
	Memory consumption

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix
	References


