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SUMMARY
High-dimensional brain activity is often organized into lower-dimensional neural manifolds. However, the
neural manifolds of the visual cortex remain understudied. Here, we study large-scale multi-electrode elec-
trophysiological recordings of macaque (Macaca mulatta) areas V1, V4, and DP with a high spatiotemporal
resolution. We find that the population activity of V1 contains two separate neural manifolds, which correlate
strongly with eye closure (eyes open/closed) and have distinct dimensionalities. Moreover, we find strong
top-down signals from V4 to V1, particularly to the foveal region of V1, which are significantly stronger during
the eyes-open periods. Finally, in silico simulations of a balanced spiking neuron network qualitatively repro-
duce the experimental findings. Taken together, our analyses and simulations suggest that top-down signals
modulate the population activity of V1. We postulate that the top-down modulation during the eyes-open
periods prepares V1 for fast and efficient visual responses, resulting in a type of visual stand-by state.
INTRODUCTION

The brain can be described as a high-dimensional dynamical

system capable of representing and processing a plethora of

low-dimensional variables.

The time-resolved activity of a population of neurons can be

considered as a trajectory in a high-dimensional space, where

each neuron represents one dimension, i.e., the state space of

the neural system. Typically, the system does not attain all

possible states in the state space but rather remains confined

to small subsets. These subsets of the state space are referred

to as neural manifolds.1–5 Neural manifolds have been shown to

encode aspects such as decision-making in the prefrontal cor-

tex of macaque,6 hand movement trajectories in the motor cor-

tex of macaque,2,3,7 odor in the piriform cortex of mice,8 head

direction in the anterodorsal thalamic nucleus of mice,5 and

spatial position in the hippocampus of mice.9 The study of neu-

ral manifolds in the visual cortex has been conducted in

mice,10,11 macaque population,12 and macaque complex sin-

gle-neuron13 visual responses. However, to the best of our

knowledge, the state dependence of neural manifolds in the

primary visual cortex (V1) of macaque has not yet been

investigated.
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Neural manifolds often have an intricate structure, which can

be studied using methods borrowed from computational topol-

ogy.5,12,14 In addition to the topology, the number of uncorre-

lated covariates required to capture the variance in the state

space is studied as a measure of the dimensionality of a neural

system.1,10,15–20 Regardless of species and brain area, the

dimensionality is drastically lower than the total number of re-

corded neurons (i.e., state-space dimension),1 suggesting

robust encoding of low-dimensional variables. Stringer et al.10

showed that the dimensionality of visual cortical activity in

mice can vary dynamically to encode precise visual input, seen

as changes in the power law exponent of the explained variance.

Such dynamical changes in dimensionality have not yet been

demonstrated in other species.

Whether a subject has its eyes open or closed is known to

affect the activity in the visual cortex, even in darkness.21–25 In

particular, the spectral power in the alpha frequency band

(roughly 8–12 Hz) is known to decrease when the eyes are

open, commonly known as alpha blocking.26–28 Alpha blocking

is usually attributed to desynchronization27 or oscillatory damp-

ing28 within V1. However, the concrete pathway(s) triggering

these phenomena, and the relation between eye closure and

neural manifolds in V1, are still unknown.
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Figure 1. Overview of the experiment and neural manifold construction

(A) Illustration of the experimental setup.

(B) Approximate locations of array implants in both experiments. Exact placement of the arrays differs slightly between subjects L and A.

(C) Steps for obtaining the multi-unit activity envelope (MUAe)43 used in this study. Band-pass filtering is performed between 500 Hz and 9 kHz, and the rectified

signal is low-passed at 200 Hz to obtain the MUAe.

(D) Schematic representation of state space and a neural manifold. Note that time is implicit within the neural manifold.
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V1 neurons are known to represent fine details of visual input

at both single-neuron and population levels.12,29 The visual sys-

tem is hierarchical in nature, with information traveling from lower

to higher areas (bottom-up) and vice versa (top-down), within

specific frequency bands.30–33 Top-down signals from V4 to V1

are known to mediate visual attention for figure-ground segrega-

tion and contour integration in macaque.33–37 Recent evidence

suggests that top-down signals can modulate neural manifold

geometry and dimensionality.38,39 Naumann et al.38 show in sil-

ico that top-down signals can rotate neural manifolds tomaintain

context-invariant representations. Dahmen et al.39 show that

recurrent connectivity motifs modulate the dimensionality of

the cortical activity. As effective connectivity is input depen-

dent,40 a change in top-down input may therefore affect the

dimensionality of neural activity. However, whether top-down

signals modulate neural manifold geometry and dimensionality

in vivo remains to be shown.

Here, we study the state space of the primary visual cortex of

the macaque (n = 3) during the resting state and its relation to the

top-down signals from higher visual areas (V4, DP). We find that

the population activity of macaque V1 is organized as two

distinct high-dimensional neural manifolds, which are correlated

with the behavior (eye closure) of the macaques but not related

to specific visual stimuli. The dimensionality of each of these

manifolds is significantly different, with higher dimensionality

found during the eyes-open periods than the eyes-closed pe-
2 Cell Reports 43, 114371, July 23, 2024
riods. In addition, we estimate input from higher cortical areas

to V1 and find that these top-down signals are significantly stron-

ger during the eyes-open periods, suggesting they play a role in

modulating the neural manifolds and the dimensionality. Finally,

we simulate a spiking neuron model under resting-state condi-

tions and show that top-down signals can induce multiple mani-

folds by changing the firing modes of the network. Taken

together, the data analysis and simulations show that top-

down signals can actively modulate the V1 population activity,

leading to two distinct neural manifolds of macaque visual

cortical activity.

RESULTS

To explore the activity in the visual cortex, the intracortical elec-

trical potential from the visual cortex of three rhesus macaques

(Macaca mulatta) was recorded. The experiments simulta-

neously recorded the activity from V1 and V4 (macaques L and

A)41 and from V1 and DP (macaque Y, see Figure 1B).42 The re-

cordings were made in the resting state; i.e., the macaques sat

head-fixed in a dark room and were not instructed to perform

any particular task. In this state, the macaques often showed

signs of sleepiness and kept their eyes closed for periods of var-

iable duration. The right eye—contralateral to the site of neural

recording—was tracked using an infrared camera, allowing

the identification of periods of open or closed eyes. See



Figure 2. Two distinct neural manifolds in

V1 correlated with eye closure

(A) Overview of the experimental data from ses-

sion L_RS_250717. From top to bottom: time

evolution of the eye tracker signal; the Z-scored

MUAe signal for each electrode (electrodes or-

dered by their correlation with the eye signal); the

mean Z-scored MUAe at each time point; and the

log odds overlaid with the most likely manifold

(two clusters, Gaussian mixture model).

(B–D) The first three principal components of the

MUAe population activity. Colors indicate the log

odds of a Gaussian mixture (B), the eye tracker

signal (C), and the mean Z-scored MUAe (D). Each

dot represents a different point in time. Outliers

were excluded from the neural manifolds shown in

(B)–(D) (see ‘‘outlier removal’’).

(E and F) Violin plots of the distribution of the log

odds across epochs, distinguished according to

the eye tracker signal (E, result of a logistic

regression test shown) and Z-scored MUAe (F).

Horizontal bars indicate medians of the distribu-

tions. Note that (D) shows the mean MUAe,

whereas (F) shows the full distribution. To distin-

guish whether the eyes-open (EO) and eyes-

closed (EC) periods are estimated from the eye

tracker signal or the Gaussian mixture model, we

use the subscripts ‘‘t’’ and ‘‘g,’’ respectively.
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electrophysiological data frommacaques L & A and electrophys-

iological data from macaque Y in STAR Methods for further de-

tails on the data acquisition and processing. The experimental

setup and data processing steps are illustrated in Figure 1.

Two distinct neural manifolds in V1 correlated with eye
closure
We characterize the high-dimensional population activity (be-

tween 40 and 800 electrodes, see Table S1 for details) for each

area and macaque in terms of the downsampled (1 Hz) multi-

unit activity envelope (MUAe)43 (Figure 2A). We projected the

population activity into a 3D space for visualization using prin-

cipal component analysis (PCA) (Figures 2B–2D).

In V1, at least two distinct neural manifolds are apparent in the

3D projection space (one sample session shown in Figures 2B–

2D, see Figures S1–S6 for all other sessions and subjects). We

labeled the manifolds according to the sign of the log odds of

a two-component Gaussian mixture model (see ‘‘neural mani-

folds and clustering’’ and ‘‘outlier removal’’. The log odds repre-

sent the probability for a given data point to correspond to one

manifold or the other.

To confirm that the twomanifolds in the lower-dimensional pro-

jection are not an artifact of the dimensionality reduction, we esti-

mated the Betti numbers of the high-dimensional population ac-

tivity using persistent homology (Figure S7). The persistence
C

barcodes show that at least two indepen-

dent generators of the H0 homology

groups exist in the high-dimensional pop-

ulation activity, corresponding to two

connected components (Figure S7), i.e.,

two distinct neural manifolds. Thus, we
confirm that the two manifolds observed in the 3D projection

are inherent to the high-dimensional space.

Additionally, we tested whether the observed manifolds could

be an artifact of the MUAe signal. We spike-sorted one session

(L_RS_250717) with a semi-automatic method and analyzed

the population activity resulting from the single-neuron instanta-

neous firing rates (Figure S8). The spiking activity also displayed

two manifolds, in agreement with the MUAe signals.

While the activity of visual cortex is mainly driven by visual

input, whether and to what extent it is separately modulated by

eye closure are unclear. Marking data points on the V1manifolds

with the eye tracker signal (Figure 2B) reveals that one manifold

strongly relates to the eyes-open (EOt) periods, whereas the

other manifold strongly relates to the eyes-closed (ECt) periods.

We use the subscript ‘‘t’’ to refer to the eye closure estimated

from the eye-tracking camera.

To confirm the correlation between eye closure andmanifolds,

we tested the differences between the EOt and ECt periods using

a 2-fold approach. First, we performed a logistic regression of

the eye tracker signal by the log odds, revealing a significantly

higher than chance correspondence in all sessions (Figure 2E).

Second, we visualized the distribution of the log odds in EOt

and ECt periods separately, showing a clear correspondence

between the eye tracker signal and the sign of the log odds in

most cases (Figure 2E). Taken together, the logistic regression
ell Reports 43, 114371, July 23, 2024 3
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and the log odds distributions demonstrate thatmembership of a

point in state space in one of the two V1 manifolds is closely

related to eye closure.

Furthermore, we define the EOg and ECg periods as the times

with a positive or negative Gaussian mixture model log odds

(subscript ‘‘g’’ for Gaussian mixture model). Note that EOt and

EOg periods are very similar, but not identical, likely due to noise

from the eye-tracking system. Due to this noise, we consider the

Gaussian mixture model log odds to be a more reliable indicator

of the eye closure than the eye-tracking camera. Therefore, we

consider the EOg/ ECg periods to represent the eye closure for

the rest of this work.

The existence of two separate manifolds could be trivially ex-

plained if theMUAe activity levels were significantly higher in one

manifold, and the manifolds simply reflected the mean popula-

tion activity. To rule out this possibility, we checked whether

higher-activity epochs uniquely correspond to one of the mani-

folds. The violin plots of the full data distribution—based on the

Z-scored MUAe shown in Figure 2A—show that there is no clear

separation into two manifolds (Figure 2F). Additionally, we visu-

alized the 2D histograms of Z-scored MUAe against log odds

(Figure S9). Both the violin plots and the 2D histograms suggest

that the activity level alone does not fully explain the presence of

the two neural manifolds in macaque V1.

For completeness, we also visualized the population activity

from V4 and DP (Figures S10, and S11). In contrast to V1, the

population activity in areas V4 and DP does not appear to

contain two distinct neural manifolds. We also tested the rela-

tionship between neural activity and eye closure in V4 and DP

(Figure S12), using the same procedure as for V1. Although

some correlation is observed between the eye tracker signal

and log odds, the violins reveal no clear manifold separation.

Furthermore, we measured the high-dimensional Euclidean dis-

tance between all time points of the MUAe signal, within and

across manifolds, as defined from the V1 log odds. The distribu-

tions revealed that cross-manifold distances are larger than

within-manifold distances in V1 but nearly identical in V4 and

DP, quantified by the Wasserstein distance (Figure S13). Thus,

we conclude that the observed manifolds are restricted to V1

and are not present in V4 nor DP.

Higher dimensionality during eyes-open periods,
primarily due to decorrelation
To further understand the functional role and implications of the

observed neural manifolds in V1, we studied the dimensionality

in the different conditions (EOg/ ECg). We used the participation

ratio (PR, Equation 1), which is defined from the eigenvalues of

the covariance matrix between the MUAe signals at different

electrodes.19,29 The PR can be rewritten in terms of the statistics

of the covariance matrix as

PR =

�P
ili
�2

P
il

2
i

=
N

1+v2+ðN � 1Þðm2+s2Þ ; (Equation 1)

where li are the eigenvalues of the covariance matrix, and N is

the number of electrodes. v, m, and s are the ratios between

the standard deviation of auto-covariances, average cross-co-
4 Cell Reports 43, 114371, July 23, 2024
variances, and the standard deviation of cross-covariances

with respect to the average auto-covariances, respectively

(see ‘‘dimensionality’’ for detailed methods).

To study the dimensionality, we computed the time-varying

PR from the Z-scored MUAe signals (Figure 3A) by calculating

the PR for 30-s sliding windows (1-s steps, thus 29 s of overlap

with adjacent windows). Higher MUAe activity is typically associ-

ated with higher variance, which may bias the results toward

higher dimensionality. To avoid this bias, we normalize the

data via Z scoring within each window. We found that there is

a strong correlation between the log odds and the time-varying

PR (Figure 3B), which we confirmed by comparing the PR values

between EOg and ECg using a Mann-Whitney U test (Figure 3C).

We also measured the PR for one spike-sorted session (Fig-

ure S8D). The correlation and statistical tests show that the

dimensionality is higher in EOg periods, consistently for all data-

sets, both for MUAe and spikes.

To further support this finding, we show the distribution of the

variance explained by each of the principal components (PCs) of

the MUAe data, depicted on a log-log scale in Figure 3D. Here,

we applied PCA separately for EOg and ECg periods, unlike in

Figure 2, where PCA was applied to the full data. We fitted a po-

wer law to the PC variances and report the exponent a (Fig-

ure 3E). A higher a indicates faster decay of the curve, i.e., lower

dimensionality. The power law exponents are in agreement with

our sliding window approach: we observe higher dimensionality

in EOg periods for all sessions (Figure 3E).

To narrow down the reason causing the dimensionality

changes, we computed v2, ðN � 1Þm2, and ðN � 1Þs2 and

observed that the changes in ðN � 1Þm2—i.e., the average

cross-covariances—dominate the PR differences between EOg

and ECg periods (Figure 3F). Thus, the main reason for the

observed dimensionality changes is decorrelation in EOg

periods.

Top-down signals from V4 to V1 are present in the form
of beta-band spectral Granger causality
In search of an internal mechanism that maymodulate the neural

manifolds and dimensionality, we turned our attention to cortico-

cortical interactions. Since signatures of top-down activity have

previously been reported in the beta frequency band (roughly

12–30 Hz),31,33,44 we use spectral Granger causality to measure

top-down signals.

To determine whether top-down signals are present in our

data, we calculated the coherence and Granger causality be-

tween every pair of V1-V4 and V1-DP electrodes (see ‘‘coher-

ence and Granger causality’’) using the local field potential

(LFP). Figures 4A and 4B show the coherence and spectral

Granger causalities for a sample pair of electrodes. To quantify

the cortico-cortical signals, we searched for peaks in the

coherence and Granger causality using an automatic method

(see peak detection in STAR Methods). We detected beta-fre-

quency Granger causality peaks in a small fraction of all V1-V4

electrode pairs (Figure 4F), predominantly in the top-down

direction (see full results in ‘‘results from peak detection in LFP

coherence and Granger causality’’ and Table S4). We did not

find any gamma-band communication between V1 and V4, a

common indicator of bottom-up visual processing,45 likely



Figure 3. Higher dimensionality in EOg pe-

riods

(A) Log odds and participation ratio (PR) for ses-

sion L_RS_250717. The PR was calculated on a

30-s sliding window.

(B) Pearson correlation between log odds and PR

for each session.

(C) Comparison of PR between neural manifolds

(Mann-Whitney U test); error bars indicate the

standard deviation.

(D) Distribution of principal components and

their explained variance on a log-log scale for

each condition. We fit a power law of the

form y = bx�a, which is linear in the log-log plot

since log y = � a log x + log b. The power law

exponent awas estimated over the ranges where

the curves approximate a power law.

(E) Comparison of power law exponents for the

two conditions in all sessions. EOg periods al-

ways had a smaller exponent, indicating a higher

dimensionality.

(F) Differences in the terms of the PR function

between EOg and ECg periods; error bars indi-

cate the standard deviation. The results of

Welch’s t test across sessions are shown. The

quantities are related to the standard devia-

tion of auto-covariances (v2), average cross-

covariances (ðN � 1Þm2), and standard deviation

of cross-covariances (ðN � 1Þs2).
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due to the dark environment. Also, we did not find any commu-

nication between V1 and DP.

For the electrodes with a beta causality peak, we estimated

the causality strengthB (Equation 6). The electrodes with their vi-

sual receptive field (RF) closer to the fovea show substantially

higher B (Figures 4C, 4D, and S17). The communication was

restricted to the foveal region, even though the sampling

included many pairs with overlapping RFs at different eccentric-

ities (Figure 4D). RFs were approximated as ellipses, and the

overlap was measured as the fraction of the V1 RF contained

within the V4 RF (Figure S16). The topographic organization of

the top-down communication is in agreement with a previous

structural connectivity report46 (Figure 4E).

In conclusion, we found strong top-down signals from V4 to

V1, in agreement with previous studies,31,33,44 but we did not

find signals between DP and V1 in our data. V4-to-V1 signals

are therefore strong candidates for the modulation of the neural

manifolds and dimensionality.

Stronger top-down signals from V4 to V1 during eyes-
open periods
To elucidate the behavioral relevance of the V4-to-V1 top-down

signals, we examined how the LFP spectral power, coherence,

and Granger causality change in relation to eye closure.

We extracted the LFP data for each behavioral condition and

concatenated the data within the same condition. This approach

could introduce some artifacts, which we expect to be minor in

view of the very small number of transitions in comparison with

the number of data samples (500-Hz resolution). Both in V4
and V1, we find that the spectral power at low frequencies

(<12 Hz) is higher in ECg periods, whereas the power in the

beta band (12–30 Hz) is slightly higher in EOg periods

(Figures 5A and S19). Spectrograms of the V1 LFP power

confirm the reduction in low-frequency power in EOg periods

(Figure S21). The coherence in the beta band is higher in EOg pe-

riods, with the peak shifted to higher frequencies compared to

ECg. Notably, the beta-band top-down Granger causality is sub-

stantially higher in EOg periods.

In order to confirm our observations, we also computed the

time-dependent spectral Granger causality using a 10-s sliding

window (Figure S20A). Statistical tests (Welch’s t test) of the

time-varying spectral Granger causality confirmed stronger

top-down interactions in EOg compared to ECg periods for a

vast majority of all electrode pairs (Figures S20B and S20C).

Thus, we found higher beta-band Granger causality in EOg pe-

riods using two different approaches.

Additionally, to confirm the interdependence of top-down sig-

nals and the neural manifolds, we computed the correlation be-

tween the time-varying beta-band Granger causality BðtÞ (Equa-
tion 8) and the log odds (Figures 5B and 5C). An overwhelming

majority of V1-V4 electrode pairs showed a highly significant cor-

relation (p < 10� 6, two-sided t test). Thus, the top-down signals

and neural manifolds are co-dependent at a fine temporal scale,

regardless of the behavioral condition.

We further tested whether the top-down signals were corre-

lated with gaze direction and eye movements (Figure S22) to

rule out the presence of any visual stimuli—despite the experi-

ments being performed in a dark room. No clear trend could
Cell Reports 43, 114371, July 23, 2024 5



Figure 4. Inter-area coherence and spectral Granger causality

(A) Representative sample of coherence between V1 and V4 (electrodes 242 and 160, respectively). Low-frequency and beta-band peaks are indicated.

(B) Representative sample of spectral Granger causality.

(C) Schematic representation of the electrode locations overlaid with themean top-down signal strengthB per electrode (see ‘‘coherence and Granger causality’’

for a description of B).

(D) (Left) Receptive field (RF) map overlaid with the mean B per electrode. Stronger B is found around the foveal region of V1; the electrodes with no Granger

causality peaks in the beta band marked with an x. (Right) Median overlap between V1-V4 RFs, shown on top of the V1 RF centers.

(E) Fraction of labeled neurons (FLN) from V4 to V1 (data from tract-tracing experiments).46 V1 subdivisions represent c: central (foveal region), LF: lower visual

field, pc: peri-central, and fp: far periphery. The strongest connectivity exists from V4 to V1c, in agreement with our measurements.

(F) Number of electrode pairs with strong top-down signals detected in each session.
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be observed, thus indicating no relation between gaze direction

and top-down signals. This finding suggests that the visual

scene is not the source of the observed top-down signals.

The observation of top-down signals particularly in the foveal

region (Figure 4) and their correlation with the neural manifolds

(Figure 5) suggests that the separation of the neural manifolds

should be most prominent around the foveal region. We sepa-

rated the electrodes from one session (L_RS_250717) into five

groups with roughly equal size (nz140) based on the distance

of their RF center to the fovea (Figure S23). We quantified the

EOg-ECg differences in mean MUAe, manifold separability, and

dimensionality for each group (Figure S23). Around the foveal re-

gion (RFs < 2+) the observations were compatible with the top-

down modulation: small EOg-ECg differences in mean MUAe,

large separability, and large dimensionality differences. The

mid-region (4+ > RFs > 2+) had small mean MUAe differences,

separability, and dimensionality. Interestingly, the periphery

(RFs > 4+) had large mean MUAe, separability and dimension-

ality. The observations in the peripheral sites cannot be ex-

plained by the top-down modulation and could instead originate
6 Cell Reports 43, 114371, July 23, 2024
from bottom-up interactions. Further research will be needed to

fully characterize these central-peripheral differences.

In conclusion, the time-dependent spectral analysis reveals

large variations of power and Granger causality. On the one

hand, the spectral power at low frequencies decreases in EOg

periods, consistent with the well-known alpha-blocking phe-

nomenon.26–28 On the other hand, the V4-to-V1 top-down sig-

nals are strongest in EOg periods. The time-varying top-down

beta causality strength did not substantially correlate with gaze

direction or eye movements, suggesting no relation between

the top-down signals and the visual scene—as expected in a

dark room. Taken together, these results suggest that V4-to-

V1 signals modulate V1 activity, contributing to a different

state-space manifold with increased dimensionality, especially

in the foveal region.

DISCUSSION

In this paper, we presented three novel findings in the primary vi-

sual cortex (V1) of macaques during the resting state: two



Figure 5. Stronger top-down signals from V4 to V1 in EOg periods

(A) Spectral power, coherence, and Granger causality of the LFP for the electrodes with Granger causality peaks in session L_RS_250717 (see Figure S19 for all

other sessions). The data for each behavioral condition (EOg/ ECg) were concatenated and their metrics reported separately (top row). The difference between

EOg and ECg periods was calculated for each electrode or pair of electrodes (bottom row). In all panels, the thick line shows themedian across electrodes (or pairs

of electrodes), and shading indicates the 25th to 75th percentile.

(B) Time evolution of log odds (top) and time-dependent beta-band Granger causality strength BðtÞ (bottom) for the electrode pairs with top-down signals.

(C) Histogram of the Pearson correlation between the log odds and BðtÞ. Color indicates the significance levels of the associated two-sided t test.
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separate manifolds in the state space associated with eye

closure (Figure 2); higher dimensionality due to lower mean

cross-correlations in EOg periods (Figure 3); and the presence

of stronger top-down signals from V4 to V1 in EOg periods, pri-

marily targeting the foveal region of V1 (Figures 4 and 5). In addi-

tion, we observed lower power at frequencies below 12 Hz in

EOg periods (Figures 5 and S21), consistent with the well-known

alpha-blocking effect.26

We observed that two distinct manifolds appear in the state

space of macaque V1 during the resting state for all subjects

and sessions, for both MUAe and spike data (Figures 2, S1–

S6, and S8), and they are correlated with eye closure

(Figures 2E and 2F). The manifolds were not just an artifact of

the three-dimensional projection used for visualization, as we

confirmed they also exist in higher dimensions with persistent

homology (Figure S7). The manifolds were not observed in V4

nor DP, in neither the PCA visualization, the Gaussian mixture

model, nor the Euclidean distance distributions (Figures S10–

S13). Previous work inmice has shown that the visual cortex rep-

resents a myriad of behaviors in the resting state, such as facial

movements or running.47 However, a similar study on the ma-
caque showed that the macaque visual cortex is very specific

to vision and minimally driven by spontaneous movements.48

Thus, we do not expect the neural manifolds of V1 to be strongly

affected by any behavior other than visual behavior, in agree-

ment with our finding that eye closure neatly explains the two

manifolds.

Our findings could in principle be explained by the presence of

complex visual stimuli that would alter the population dynamics

and cortico-cortical communication. However, we are certain

that no strong visual stimuli are present in the visual field, due

to the very dark environment of the recording room. Additionally,

we performed several analyses to control for activity levels (Fig-

ures 2 and S9) and gaze direction (Figure S22). Furthermore, the

original data for macaques L and A includes an extensive evalu-

ation of data quality, which excluded all electrodes that did not

strongly respond to visual stimuli.41 Thus, all the electrodes

included in our analysis (from macaques L and A) would strongly

respond if there were strong visual stimuli, but we observed no

such responses in the MUAe activity (see Figure 2). Additionally,

we did not find any gamma-band bottom-up interactions be-

tween V1 and V4, which would indicate visual processing.45
Cell Reports 43, 114371, July 23, 2024 7
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We are therefore certain that the visual input is faint or nonexis-

tent, which implies that the observed neural manifolds must be

induced by some internal mechanism.

Further characterization of the activity in the different mani-

folds revealed that the neural dimensionality is time dependent

(Figure 3). We observed higher dimensionality during EOg pe-

riods across all macaques and sessions. Our measured dimen-

sionality is in agreement with previous reports on the visual

cortex.10,16 Previous work has also shown higher dimensionality

in EOg periods in the primary motor cortex,49 analogous to our

findings in the visual cortex. Note that we focused on the dimen-

sionality of the neural activity in terms of number of covariates

required to capture a certain amount of the variance. This is

fundamentally different from the geometric embedding dimen-

sion of the neural manifolds. Nevertheless, the strong correlation

between the Gaussian mixture log odds and time-varying PR

suggests dimensionality changes are inherent to the underlying

manifolds.

We hypothesized that top-down signals from higher cortical

areas could be the modulatory mechanism responsible for the

changes observed in the neural manifold and dimensionality of

V1 activity. Indeed, we found that there are strong top-down sig-

nals from V4 to V1 (Figure 4). These signals target particularly the

foveal region of V1, in agreement with structural connectivity.46

We also found the top-down signals to vary over time, with

increased presence in EOg periods (Figure 5). In agreement

with our findings, previous studies found that cortico-cortical

top-down signals between V1 and V4 are predominantly present

in the beta (12–30 Hz) frequency band, while bottom-up signals

between V1 and V4 are present in the delta/theta (<8 Hz) and

gamma (>30 Hz) bands.31,44 Others suggest that top-down sig-

nals from V4 to V1 are found more generally in the low fre-

quencies (<30 Hz), not uniquely in the beta band.33 In our anal-

ysis we did not find any gamma-band causality (Figure 4),

likely because our recordings were from the deep cortical layers

(in macaques L and A, the electrodes were 1.5 mm long, likely

recording mostly from layer 5), and gamma oscillations are

known to be weak in layer 5 of the visual cortex.30,50 In addition,

gamma activity is associated with bottom-up signals,33,45 which

we do not expect in a dark roomwith no visual stimuli. In contrast

to our findings, van Kerkoerle et al.30 reported that top-down sig-

nals appear in the alpha (8–12 Hz) frequency range. Whether the

specific top-down and bottom-up frequencies generalize to the

whole cortex is unclear. Instead, Vezoli et al.44 postulate overlap-

ping modules of certain frequencies (alpha, low-beta, high-beta,

and gamma) that differ across cortical areas. Our findings are

also consistent with the work by Semedo et al.,51 who suggested

that bottom-up signals dominate during visual stimulation and

top-down signals dominate in the absence of visual stimuli—

note that in their work, the eyes were always open.

The spatial organization of the top-down signals is in agree-

ment with predictions made by the central-peripheral dichotomy

(CPD) theory.52,53 In this theory, the central vision is proposed to

be primarily concerned with object recognition, and thus, it

should be more strongly targeted by top-down inputs (e.g.,

from V4). These top-down signals would query additional visual

information, ultimately reducing ambiguity in visual processing.

We also found differences in the separability and dimensionality
8 Cell Reports 43, 114371, July 23, 2024
of the neural manifolds in the center and periphery of V1 (Fig-

ure S23), although their link to perception is still unclear.

We did not find top-down signals from DP to V1, possibly due

to the electrodes used in macaque Y being 1mm long, thus likely

recording from layer 4, and DP / V1 connections do not origi-

nate nor target layer 4.54 An alternative explanation might be

formulated in the context of the CPD theory, which asserts that

top-down inputs in the dorsal stream should preferentially target

the far periphery of V1,55 which our experiments did not re-

cord from.

In the present study, it was not possible to test directly from

the experimental data whether the V4-to-V1 signals are respon-

sible for the modulation of V1 dynamics. Future studies could

perform such a test by a reversible inactivation of the V4-to-V1

pathway, such as by reducing the temperature of V4,56–58 inject-

ing a GABA agonist (e.g., muscimol or bicuculline)59–61 or using

targeted optogenetic suppression.62 These techniques have

been successfully applied to study the suppression of cortico-

cortical communication but were not used in our experiments.

Therefore, we could not test whether V4-to-V1 signals cause

the observed effects in our data. Furthermore, to the best of

our knowledge, there are no studies reporting the effects of ma-

caque V4 inactivation in the resting state.

Numerical simulations offer an alternative approach to study

whether top-down signals in spiking neural networks can cause

distinct neural manifolds. We performed preliminary simulations

of a simple spiking neuron model—of the well-known Brunel

type63—to ascertain whether V4-to-V1 signals can modulate

the neural manifolds (Figure 6). Modeled top-down signals, in

the form of sinusoidal oscillating inhomogeneous Poisson pro-

cesses, led to a different neural manifold in the network activity

when a subset of the network neurons was targeted (Figure 6D).

These changes were not due to the increase in firing rate caused

by the additional top-down input but rather due to the activation

of different neuron patterns in the model (Figures 6E and 6F). We

limited the analysis of the model to the presence of neural mani-

folds, because our model was ill-suited to study the dimension-

ality, given that average cross-correlation is known to cancel out

in balanced excitatory-inhibitory networks.64,65 Future work

could use more complex models—such as clustered net-

works64,66,67—to study the effects of correlated inputs with real-

istic power spectra on the dimensionality and elucidate whether

the top-down signals can directly induce the observed increase

in the dimensionality in EOg periods.

Taken together, our data analysis and simulations suggest that

top-down modulation alone is sufficient to cause the distinct

neural manifolds in V1 activity. Nevertheless, sustaining the

different V1 manifolds might involve additional mechanisms,

such as neuromodulation or adaptation of recurrent connectivity

via short-term plasticity. Previous work suggests that N-methyl-

D-aspartate (NMDA) receptors are essential for the top-down

communication from V4 to V1.35,68 Interestingly, targeted phar-

macological deactivation of NMDA receptors in macaque V1

leads to the suppression of alpha blocking28 and absence of de-

correlation during eyes open,69 both of which are correlated with

the increased V4-to-V1 signals in our data. In addition, the top-

down signals are not constant throughout the EO periods (Fig-

ure S20), but the slow timescale of the NMDA receptors could



Figure 6. Simulation of a balanced spiking

neural network with top-down modulation

(A) Diagram of balanced random spiking neural

network. Background input is provided constantly,

and top-down signals are provided intermittently.

(B) Sample raster plots show spiking activity in the

different input regimes.

(C) Time evolution of input regimes and mean firing

rate (FR). Average FRs are 2.026 spikes/s in the

background state and 2.164 spikes/s in the top-

down input state; the increase is minimal.

(D) First two principal components of the FR

(bin size = 1 s). Colors indicate the different input

regimes.

(E) Distribution of mean FR per neuron is almost

identical between the two regimes. Note the large

difference of the plotted scale in (C) and (E).

(F) Mean FR of the 100 most active neurons. The

top-down modulation changes the mean FRs of

each neuron, in both the positive and negative di-

rections, leading to the observed distinct manifolds.
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help sustain the distinct neural manifold during EO periods, even

if the top-down input fades. Thus, we speculate that the top-

down connections preferentially target the NMDA receptors in

V1 neurons, leading to the observed alpha blocking and decor-

relation. Another mechanism could involve recurrent connectiv-

ity in the form of cell-type-specific motifs. Suchmotifs have been

shown to affect the dimensionality of brain networks,39 and they

could emerge in the effective connectivity of the network as a

result of the top-down input.

Saccadic eye movements are known to elicit a biphasic mod-

ulation of firing rates (first suppression and then enhancement) in

both V170 and V471 neurons within 100–300 ms after saccade

onset. The laminar pattern and latency in V1 suggest lateral

geniculate nucleus (LGN) as the source of this modulation,

whereas its presence in the dark—although weaker—suggests

an extra-retinal origin70; the exact pathway is not known. Given

the relatively fast timescale (�100 ms) of post-saccade biphasic

modulation, it is unlikely to be the only mechanism affecting our

observations of neural manifolds and dimensionality on a slower

timescale (1,000 ms). Nevertheless, saccades could trigger

other mechanisms leading to the changes on the slower

timescales.
C

If the V4-to-V1 signals convey behav-

ioral information, then how does such

behavioral information reach V4 in the first

place? We explore the possible communi-

cation pathways that lead to the observed

V4-to-V1 signals, illustrated in Figure 7.

We identified three main candidates: the

visual stimulus (or absence thereof) from

the retina to V1; the proprioception of

eyelid muscles via the somatosensory

cortex; and the voluntary motor com-

mands for eye closure. The first proposed

pathway involves visual stimuli being

transmitted from the retina to V1 via the

LGN. The absence of stimuli could be the
reason for the observed changes in the V1 activity, whereas

the presence of visual stimuli could trigger a V1-V4 feedback

loop. However, the macaques in our experiments had very little

to no visual input, even when the eyes were open, since they

were sitting in a dark room. The eye movements could also

contribute to this feedforward pathway from LGN to V1, with their

aforementioned biphasic modulation. Another candidate for the

modulation is the locus coeruleus (LC), since it innervates the

LGN and its activity is known to correlate with arousal.72,73 How-

ever, the LC does not topographically project to the LGN nor

V172,74 and can therefore not fully explain our observations,

especially with respect to the RF eccentricity (Figure S23).

The second proposed pathway involves proprioception of the

eyelid that could inform the cortex when the eyes are closed

and trigger the activity changes in V1. Mechanoreceptors in the

eyelid activate the oculomotor nerve projecting to the midbrain

(possibly to the superior colliculus),75 eventually entering the cor-

tex via the somatosensory area (S1).76 From S1, the signal could

find its way to V1 via several cortico-cortical pathways, potentially

including neurons in V4; however, this mechanism might be

relatively slow, given the absence of direct connections from

S1 to V1 or V4.77 Furthermore, the shortest known S1-to-V1
ell Reports 43, 114371, July 23, 2024 9



Figure 7. Proposed communication pathways for V1 modulation via V4

(A) Visual input directly to V1 triggering a cortico-cortical feedback loop.

(B) Proprioception of eyelid muscles via the midbrain (possibly superior colliculus) and somatosensory cortex.

(C) Cortico-cortical communication of motor commands.
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cortico-cortical pathway does not involve V4, rendering this

pathway a rather weak candidate.

The third and final proposed pathway involves voluntary eyelid

closure, which is initiated by the ventral motor cortex and the

frontal eye field (FEF). The eyelid closure and eye movements

may be communicated to the visual cortex via cortico-cortical

connections, the superior colliculus, or maybe even the LC.

Given that V4 is part of the fronto-parietal network (with strong

FEF % V4 connections),77,78 the motor signals could easily

reach V4, which could then modulate the V1 activity. A trans-

thalamic pathway through the pulvinar could also assist the

V4-to-V1 communication, including the synchronization of the

alpha rhythm,79 although such trans-thalamic connections

have only been confirmed in mice so far.80

The hypotheses from Figure 7 are not necessarily mutually

exclusive and could all play a role in themodulation of V1 activity,

along with other explanations we might have overlooked. To un-

derstand which pathways are most relevant to sustain the mani-

folds, we had a closer look around the manifold transitions (Fig-

ure S24) by looking at the MUAe signals at a high temporal

resolution (1 kHz). For the eye-opening transitions, we observed

that sometimes V1 MUAe activity precedes V4 activity, in agree-

ment with the feedback loop hypothesis (Figure 7A), whereas in

other cases, V4 activity precedes V1 activity, in agreement with

the motor command hypothesis (Figure 7C). In the eye-closing

transitions, the activity from V1 and V4 appeared to be simulta-

neous. The number of transitions was relatively small, which

did not allow for a quantitative analysis of the transitions between

the twomanifolds. Further work could revisit this issue by looking

at longer recordings including larger numbers of transitions be-

tween eyes-open and eyes-closed periods.

Given the complex mechanisms that seem to be involved in

ensuring that V1 population activity adjusts to eye closure, it

seems likely that it has a functional benefit. First of all, if the

eyes are closed, no visual stimuli are processed, and V1 firing

rates can be reduced to save energy. On the other hand, when

the eyes are open, higher-dimensional activity might be advanta-

geous for better encoding visual stimuli, which are known to have

a high dimensionality.10 This could thus facilitate visual process-

ing. Previous work showed that spectral power in the alpha band

(8–12 Hz) is inversely correlated with visual recognition perfor-

mance in human subjects27,81; i.e., lower alpha power was asso-

ciated with better performance in a visual discrimination task.
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Our results suggest that the change in neural manifolds and

dimensionality are directly correlated with the decrease in alpha

power (Figures 5 and S21). Future work could study the relation

between the dimensionality, alpha power, and visual perfor-

mance (e.g., response latency to different images) to determine

the functional relevance of our findings.

In conclusion, we provide in vivo evidence for the modulation

of neural manifolds by cortico-cortical communication, which we

hypothesize could enable more efficient responses to visual

stimuli. Our analysis and previous results suggest that the

distinct neural manifold during eyes-open periods—together

with the corresponding dimensionality and spectral power

changes—constitutes a visual stand-by state, which is modu-

lated by top-down input from V4 and other internal mechanisms.

Limitations of the study
Our study re-analyzes previously published resting-state record-

ings from the visual cortex,41 and it is thus fundamentally limited

by the original experimental design.

We found that eye closure is related to cortical dynamics

(manifolds, dimensionality, and communication), even though

the macaques were in a dark room. The actual darkness of the

room could not be tested nor adjusted; thus, some visual stim-

ulus in the recording room could in principle trivially explain our

observations. We ensure that this is not the case by verifying

that there is no direct correlation between gaze direction, activity

levels, and communication. Furthermore, we observed no inter-

actions in the LFP gamma band, typically associated with visual

input. Therefore, we are confident that our observations are not

due to visual stimuli from the room, but rather due to an internal

mechanism. Further dedicated experiments, in more strictly

controlled darkness, could confirm our findings.

Body movements of the macaques were not tracked, but they

could in principle also influence the cortical dynamics. A recent

study48 found that the visual cortex in macaques is minimally

driven by movements, strengthening our conclusions.

Another limitation is the small number of subjects and uneven

sampling (different areas and electrodes). Originally, we stud-

ied n = 2 macaques,41 both of which also participated in visual

stimulation experiments29 (not analyzed here), which could

have influenced or damaged the visual cortex in unexpected

ways. We thus included recordings from another macaque

from a different laboratory,42 where no visual stimulation was
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performed, confirming our observations. The two experiments

unevenly sampled from different parts of the cortex. We chose

to report our results for all three recorded areas (V1, V4, and

DP), even when no effects were observed.

The current study could not establish causality between the

neural manifolds and cortico-cortical communication. Deactiva-

tion of the V4-to-V1 communication pathway would be required

to determine whether signals from V4 cause the V1 manifolds.

We show in a simple computational model that such top-down

signals can in principle be causally related to V1 manifolds.

Further experiments will be needed to confirm this link.
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Materials availability
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Data and code availability
d The electrophysiology data from macaques L and A (raw, MUAe, LFP, behavioral) were previously published and are publicly

accessible.41 The electrophysiology data for macaque Y, together with all processed data for this project have been deposited

in an online repository and are publicly available at the time of publication under a Creative Commons Attribution-ShareAlike 4.0

International Public License. The DOI to the repository is listed in the key resources table.
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d All original code has been deposited at the same repository and is publicly available as of the date of publication. The DOI to the

repository is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Macaques
We analyzed the resting state data from three (n = 3) rhesus macaques (Macaca mulatta), recorded in two different experimental lab-

oratories. The data from macaques L & A was collected at the Netherlands Institute for Neuroscience, and previously published.41

The data frommacaque Y was collected at the Institut de Neurosciences de la Timone, with the recording apparatus described else-

where.42 At the time of visual cortex array implantation macaque L (male) was 7 years old and weighed 11 kg; macaque A (male) was

7 years old and weighed 12.6 kg; and macaque Y (female) was 6 years old and weighed 7 kg.

All experimental and surgical procedures for Macaque L & A complied with the NIH Guide for Care and Use of Laboratory Animals,

and were approved by the institutional animal care and use committee of the Royal Netherlands Academy of Arts and Sciences

(approval number AVD-8010020171046).

All experimental and surgical procedures for Macaque Y were approved by the local ethical committee (C2EA 71; authorization

Apafis#13894-2018030217116218v4) and conformed to the European and French government regulations.

METHOD DETAILS

Electrophysiological data from macaques L & A
Weused publicly available41 neural activity recorded from the neocortex of rhesusmacaques (n = 2) during rest and a visual task. The

macaques were implanted with 16 Utah arrays (Blackrock microsystems), two of them in visual area V4 and the rest in the primary

visual cortex (V1), with a total of 1024 electrodes. The electrodes were 1.5mm long, thus recording from the deeper layers, likely layer

5. The system recorded the electric potential at each electrode with a sampling rate of 30 kHz. A full description of the experimental

setup and the data collection and preprocessing has already been published41; here we only provide the details relevant to this study.

Three resting-state (RS) sessions were recorded per macaque, during which the subjects did not have to perform any particular

task and sat in a quiet dark room. Pupil position and diameter data were collected using an infrared camera in order to determine

the direction of gaze and eye closure of the macaques. On the same days as the RS recordings, a visual response task was also

performed. The visual response data were used to calculate the signal-to-noise ratio (SNR) of each electrode, and all electrodes

with an SNR lower than 2 were excluded from further analysis. Additionally, we excluded up to 100 electrodes that contributed to

high-frequency cross-talk in each session, as reported in the original data publication.41 The sessions, duration and number of elec-

trodes per subject are listed in Table S1.

Electrophysiological data from macaque Y
In addition to the published data from macaques L & A, we also used an unpublished dataset from one additional rhesus macaque

(n = 1). Neural activity was recorded during rest and during a visuomotor integration task. The recording apparatus is described else-

where.42 Macaque Ywas implanted with five Utah arrays (Blackrockmicrosystems), two of them in the primary visual cortex (V1), one

in dorsal prelunate cortex (area DP), one in area 7A and one in the motor cortex (M1/PMd). In this study we only included the 6x6

electrode arrays from V1 (two arrays) and DP (one array), for a total of 108 electrodes. The electrodes were 1mm long, thus recording

from the central layers, likely layer 4. The recording system recorded the electric potential at each electrode with a sampling rate of

30 kHz.

Two resting-state (RS) sessions were recorded, during which the macaque did not have to perform any particular task and sat in a

quiet dark room. Pupil position and diameter data were collected using an infrared camera in order to determine the gaze direction

and eye closure of the macaque. We excluded up to 50% of the electrodes that contributed to high-frequency cross-talk in each

session, similarly to the methods described in.41 See Table S1 for an overview of the sessions used in this study.

MUAe and LFP signals
The raw neural data were processed into themulti-unit activity envelope (MUAe) signal and local field potential (LFP). To obtainMUAe

data, the raw data were high-pass filtered at 500 Hz, rectified, low-pass filtered at 200 Hz, and downsampled to 1 kHz. Finally, the 50,

100, and 150 Hz components were removed with a band-stop filter in order to remove the European electric grid noise and its main

harmonics. To obtain the LFP data, the raw data was low-pass filtered at 250 Hz, downsampled to 500 Hz and a band-stop filter was

applied to remove the European electric grid noise (50, 100, and 150 Hz).

The MUAe and LFP data for macaques L & A were already provided by the original authors41 in the open-source.nix format, which

uses python-neo data structures to hierarchically organize and annotate electrophysiological data and metadata. The metadata,

such as the cross-talk removal or the positions of the arrays in the cortex, were provided in the .odml machine- and human-readable

format, which were incorporated into the python analysis scripts.
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Spike sorting
The raw data from one session (L_RS_250717) were spike-sorted using a semi-automatic workflow with Spyking Circus—a free,

open-source, spike-sorting software written entirely in Python.82 An extensive description of the methods of this algorithm can be

found in their publication, as well as in the online documentation of Spyking Circus (spyking-circus.readthedocs.io).

Roughly, Spyking Circus first applied a band-pass filter to the raw signals between 250 Hz and 5 kHz. Next, the median signal

across all 128 channels that shared the same reference (2 Utah arrays) was calculated and subtracted, in order to reduce cross-

talk and movement artifacts. The spike threshold was set conservatively, at eight times the standard deviation of each signal. After

filtering and thresholding, the resulting multi-unit spike trains were whitened—removing the covariance from periods without spikes

to reduce noise and spurious spatiotemporal correlations. After whitening, a subsample of all spike waveforms is selected, reduced

to the first five principal components, and clustered into different groups with the k-medians method. Finally, all spikes in each elec-

trode are assigned to one of the waveform clusters based on a template fitting algorithm, which can also resolve overlapping

waveforms.

After the automatic sorting, the waveform clusters were manually merged and labeled as single-unit activity, multi-unit activity, or

noise. Only single-unit activity (SUA) spike trains were included in this study. The waveform signal-to-noise ratio (wfSNR) was calcu-

lated for all SUA, and those with a wfSNR < 2 or electrode SNR < 2 (from the visual response task) were excluded from the analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Neural manifolds and clustering
The MUAe data were downsampled to 1 Hz and arranged into a single array, with between 50 and 900 recording locations per

session.

In order to visualize the data, we used a standard dimensionality reduction technique (principal component analysis, PCA) to

reduce the neural manifold to 3D. The clusters observed in the RS sessions were labeled using a two-component Gaussian mixture

model on the 3D projection. The clustering method provides the log odds, i.e., the chance that any given point belongs to one cluster

or the other. The log odds captures the multi-cluster structure of the manifold in a single time series; thus, we consider it to be an

identifier of the V1 manifolds.

Outlier removal
The neural manifolds in our analysis are a collection of time points scattered across the state space. In the data some time points

appear very distant from all other points, whichwe associate with noise andwe therefore seek to remove them. To identify the outliers

we used a procedure similar to the one used by Chaudhuri et al.5 First, we calculated the distance matrix of all points to each other,

and took the 1st percentile value from the distance distribution, D1. We then estimated the number of neighbors that each point had

within D1 distance, and finally discarded the 20 percent of points with the fewest neighbors.

Dimensionality
We used two different approaches to study the dimensionality of the neural data.

First, we compute the time-varying participation ratio (PR, Equation 1) from the covariance matrix. We take a 30-s sliding window

with 1 s offset over theMUAe data and compute the PR for each window separately. Higher activity leads to higher variance; thus, we

normalized the data within each window via Z-scoring to minimize this effect. The PR does not require setting an arbitrary threshold.

From the time-varying PR we measured the correlation between the log odds and the PR, and the PR distribution in each manifold.

Second, we computed the eigenvalue distribution of the neural data within eachmanifold. Once again we normalized the data after

sampling each manifold. The distribution appeared to follow a power law, in agreement with previous studies.10 We used a linear

regression in log-log space to fit a power law to our data, where the slope of the linear fit in the log-log plot corresponds to the expo-

nent a of the power law.

Coherence and Granger causality
To estimate the communication between cortical areas we rely on the coherence and Granger causality of the LFP.

Coherence is the quantification of linear correlations in the frequency domain. Such that,

CxyðfÞ =

��SxyðfÞ
��2

SxxðfÞSyyðfÞ ; (Equation 2)

whereCxy is the frequency ðfÞ dependent coherence between two signals x and y, SxyðfÞ is the cross-spectral density, and SxxðfÞ and
SyyðfÞ are the auto-spectral densities (also known as power-spectra). The cross and auto-spectra are defined as

SxyðfÞ = FxðfÞFyðfÞ; (Equation 3)

where FxðfÞ is the Fourier transform of signal x and FyðfÞ is the complex conjugate of FyðfÞ.
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In order to assess the directionality of frequency dependent interactions between the areas we applied spectral Granger causality

analysis to the LFP recordings. Spectral Granger causality between two time series xt; yt can be given in terms of a parametric multi-

variate auto-regressive (MVAR) model.83 We assume

xt =
Xp
j = 1

aj
11xt� j +

Xp
j = 1

aj
12yt� j + hx

yt =
Xp
j = 1

aj
21xt� j +

Xp
j = 1

aj
22yt� j + hy;

where hx; hy are zero-mean Gaussian noise terms with covariance matrix S and p is the order of the MVAR model. We used an

approach based on spectral analysis and spectral matrix factorisation.83 We first computed the cross-spectral matrix SðfÞ (the diag-

onal elements of which areSxxðfÞ andSyyðfÞ and the off-diagonal elements areSxyðfÞ andSyxðfÞ) with themultitapermethod. Note that

by definition SðfÞ = SðfÞy where y denotes the Hermitian conjugate. To this end, we subdivided the chosen signal pairs into 10-s long

segments. These were processed individually with 3 Slepian tapers and averaged in the end. This yielded the cross-spectrum. The

segments had an overlap of 50%. Next, we decomposed the cross-spectrum into the covariance matrix S and the transfer function

HðfÞ with the Wilson spectral matrix factorisation84:

SðfÞ = HðfÞSHyðfÞ: (Equation 4)

Here,S is the covariancematrix of the noise from theMVARmodel. Thematrix-valued functionHðfÞ can be represented by a function

c evaluated at eif :HðfÞ = jðeif Þ. For these arguments, c can be given by an infinite series, jðeifÞ =
PN

k = 0 Bke
ikf , whereBk are matrix

valued coefficients, and B0 is required to be the identity matrix. The function c is initially only defined on the unit circle

fz˛Ckzj = 1g = feif ��f ˛ ½0; 2pÞg but can be extended to a holomorphic function on the disc fz˛Cjzj< 1g83. With these factors,

one is able to obtain a version of directional functional connectivity between the first and second signals via

GCx/yðfÞ =
SxxðfÞ

~HxxðfÞSxx
~Hy
xxðfÞ

(Equation 5)

where ~HxxðfÞ = HxxðfÞ+Sxy=SxxHxyðfÞ andmutatis mutandis for the influence of the second onto the first signal. The analysis was per-

formed for all pairs of channels between the areas that exhibited a peak in the coherence of the corresponding frequency band.

We quantify the Granger causality strength as

R =
1

f1 � f0

Xf1
f0

GCx)yðfÞ (Equation 6)

where f0 and f1 are the edges of the selected frequency band. In this studywe use the following bands: l (2–12 Hz), b (12–30Hz), g (30–

45Hz), and bg (55–95 Hz); note the safetymargin around the line noise and its harmonics (50 Hz, 100Hz). The strengths corresponding

to each band are denoted by L, B, G, and bG.
We also analyzed the time-varying spectral Granger causality. For this aimwe used 10 s windows andmoved them across the data

with 1 s steps, for a final time resolution of 1 Hz. We calculated the spectral Granger causality for each window separately. The initial

and final 5 s were discarded to avoid disruptions at the boundaries. So the time-varying spectral Granger causality is

GCx)yðt; fÞ = GCx)yðfÞj½t0 ;t1 �;.;GCx)yðfÞj½tn� 1 ;tn � (Equation 7)

and mutatis mutandis for the x/y direction. From which we define the time-varying strength as

RðtÞ =
1

f1 � f0

Xf1
f0

GCx)yðt; fÞ: (Equation 8)

Note that

Rs

PN
i RðtiÞ
N

(Equation 9)

due to the nonlinearities in the Granger causality calculation.

Both the coherence and spectral Granger causality were implemented in the Electrophysiology Analysis Toolkit (Elephant).85

Peak detection
To detect coherence and Granger causality peaks (used to identify admissible channel pairs for our analysis) we used a standard

peak detection algorithm for 1D arrays. First, we smoothed the coherence and Granger causality with a Ricker wavelet (wavelet

with 25 points applied in a window 500 bins wide), to reduce the noise in the signal. Then, we applied a standard algorithm where
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points that were higher than their immediate neighbors were considered peaks. The prominence of the peaks was automatically

determined from their height and width, and peaks with low prominence (less than 0.1) were rejected. The detected peaks tended

to be broad, since our parameter choice intentionally rejected narrow and small peaks.We chose this configuration in favor of robust-

ness and to minimize false positives.

We further enforced several constraints to ensure that the detected peaks correspond to real cortico-cortical communication. First,

we rejected any peaks that did not appear in both the coherence and the Granger causality. Next, we rejected Granger causality

peaks that had a higher instantaneous causality than the directed causality. The instantaneous causality measures the zero-lag

co-fluctuations, which cannot reflect unidirectional communication, nor distinguish communication from external common inputs.

Then, we rejected peaks with a low strength (R< 0:2) within the corresponding band, as defined in Equation 6. Finally, we visualized

all the remaining peaks and manually rejected some surviving false positives.

Some examples of true positive (Figure S14), true negative (Figure S14) and false positive (Figure S15) peak detection are shown in

the supplement. The final manual curation step ensured that no false positive results were included in our analysis.

Spiking neural network simulations
To investigate the hypothesis that top-down signals in the b-band induce a change in the population dynamics and dimensionality,

we conducted a spiking neural network simulation. The network consists of 10;000 excitatory and 2;000 inhibitory leaky integrate-

and-fire (LIF) neurons with exponential post-synaptic currents. Pairs of neurons are randomly connected with a connection proba-

bility of p = 0:1. The spike transmission delay is randomly sampled following a log-normal distribution. Generally speaking, the

simulation experiments consist of two parts corresponding to the two states observed in the neuronal activity. In the first state (back-

ground state), the input consists of spike trains sampled from an inhomogeneous Poisson process with a baseline rate of nbg Hz that

is modulated with a 1 Hz sinusoidal oscillation. In the second state, the network additionally receives input spike trains from inhomo-

geneous Poisson processes with rates oscillating at 20 Hz. The first state represents the EC state, the second the EO state. Both

input regimes provide independent input to each neuron, based on the same rate profiles. We recorded the spiking activity of

1;000 excitatory and 200 inhibitory neurons. We provided the top-down modulation to a subset of the neurons in the network.

We targeted 50%of both the excitatory and inhibitory population. During the simulation, we distinguish twomanifolds, corresponding

to the EO and EC periods in the experimental recordings. See Table S2, Table S3 for a full description of the network and the exper-

iments. For the simulations we used NEST (version 3.3).86
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