001028664 001__ 1028664
001028664 005__ 20250220092006.0
001028664 0247_ $$2doi$$a10.1109/MetroXRAINE58569.2023.10405732
001028664 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04731
001028664 037__ $$aFZJ-2024-04731
001028664 1001_ $$0P:(DE-HGF)0$$aYu, Jiaao$$b0
001028664 1112_ $$a2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE)$$cMilano$$d2023-10-25 - 2023-10-27$$wItaly
001028664 245__ $$aAnalog Feedback-Controlled Memristor Programming Circuit for Analog Content Addressable Memory
001028664 260__ $$bIEEE$$c2023
001028664 300__ $$a983-988
001028664 3367_ $$2ORCID$$aCONFERENCE_PAPER
001028664 3367_ $$033$$2EndNote$$aConference Paper
001028664 3367_ $$2BibTeX$$aINPROCEEDINGS
001028664 3367_ $$2DRIVER$$aconferenceObject
001028664 3367_ $$2DataCite$$aOutput Types/Conference Paper
001028664 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1738852219_24194
001028664 520__ $$aRecent breakthroughs in associative memories suggest that silicon memories are coming closer to human memories, especially for memristive Content Addressable Memories (CAMs) which are capable to read and write in analog values. However, the Program-Verify algorithm, the state-of-the-art memristor programming algorithm, requires frequent switching between verifying and programming memristor conductance, which brings many defects such as high dynamic power and long programming time. Here, we propose an analog feedback-controlled memristor programming circuit that makes use of a novel look-up table-based (LUT-based) programming algorithm. With the proposed algorithm, the programming and the verification of a memristor can be performed in a single-direction sequential process. Besides, we also integrated a single proposed programming circuit with eight analog CAM (aCAM) cells to build an aCAM array. We present SPICE simulations on TSMC 28nm process. The theoretical analysis shows that 1. A memristor conductance within an aCAM cell can be converted to an output boundary voltage in aCAM searching operations and 2. An output boundary voltage in aCAM searching operations can be converted to a programming data line voltage in aCAM programming operations. The simulation results of the proposed programming circuit prove the theoretical analysis and thus verify the feasibility to program memristors without frequently switching between verifying and programming the conductance. Besides, the simulation results of the proposed aCAM array show that the proposed programming circuit can be integrated into a large array architecture.
001028664 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001028664 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001028664 588__ $$aDataset connected to CrossRef Conference
001028664 7001_ $$0P:(DE-Juel1)192242$$aManea, Paul$$b1$$ufzj
001028664 7001_ $$0P:(DE-Juel1)191419$$aAmeli Kalkhouran, Sara$$b2$$ufzj
001028664 7001_ $$0P:(DE-Juel1)190961$$aHizzani, Mohammad$$b3$$ufzj
001028664 7001_ $$0P:(DE-HGF)0$$aEldebiky, Amro$$b4
001028664 7001_ $$0P:(DE-Juel1)188145$$aStrachan, John Paul$$b5$$ufzj
001028664 773__ $$a10.1109/MetroXRAINE58569.2023.10405732$$v6
001028664 8564_ $$uhttps://arxiv.org/abs/2304.11030
001028664 8564_ $$uhttps://juser.fz-juelich.de/record/1028664/files/2304.11030v1.pdf$$yOpenAccess
001028664 909CO $$ooai:juser.fz-juelich.de:1028664$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001028664 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001028664 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192242$$aForschungszentrum Jülich$$b1$$kFZJ
001028664 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191419$$aForschungszentrum Jülich$$b2$$kFZJ
001028664 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190961$$aForschungszentrum Jülich$$b3$$kFZJ
001028664 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188145$$aForschungszentrum Jülich$$b5$$kFZJ
001028664 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001028664 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001028664 9141_ $$y2024
001028664 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028664 9201_ $$0I:(DE-Juel1)PGI-14-20210412$$kPGI-14$$lNeuromorphic Compute Nodes$$x0
001028664 980__ $$acontrib
001028664 980__ $$aVDB
001028664 980__ $$aUNRESTRICTED
001028664 980__ $$aI:(DE-Juel1)PGI-14-20210412
001028664 9801_ $$aFullTexts