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ARTICLE INFO ABSTRACT

This manuscript was handled by S. Sally Eliza- We investigate how hydrologic-land feedbacks and a hydrologic-water management linkage impact land cover
beth Thompson, Editor-in-Chief, with the assis- arrangements optimized within a multiobjective land cover design framework. The framework integrates a
tance of Li He, Associate Editor. spatially-distributed and physically-based hydrologic model, for simulating surface and subsurface flow and
Keywords: land processes, with a network-based multi-sector water resources management and allocation model. Both
Land cover design models used (Parflow, Pywr) are open-source. The framework is applied to a hillslope problem to identify land
Distributed hydrology cover patterns that optimize trade-offs between water, food, energy and environment objectives. Results show
Multiobjective optimization trade-offs depend on land cover composition and the spatial arrangement of land covers within the catchment.
Multisector dynamics Total runoff volume and peak flow of runoff was found to change 3 and 2-fold, respectively, between optimized
Parallel computing solutions as land cover composition and spatial patterns were altered to satisfy different combinations of

objectives. At the same time, up to a 15% reduction in the total runoff volume and an 8% reduction in
the peak flow of runoff were observed within optimized land cover patterns having equal composition but
different spatial arrangements. This emphasizes the impact on hydrologic behavior of the spatial location of
land covers within a catchment. The emergence of patterns in land cover distribution for different trade-offs
between objectives is driven by feedback mechanisms between subsurface hydrology and land processes, which
are implicitly linked to the properties of each land cover and the interactions between neighboring land covers
through lateral groundwater flow. The study demonstrates the added benefits of coupling distributed hydrologic
models with water management simulation for multisector multicriteria land cover planning.

1. Introduction as other environmental services (D’Odorico et al., 2018). Informing
land cover decisions is therefore a multiobjective problem because

Vegetation influences the energy and moisture fluxes between land, different sectors use the same resources and thus, may be in con-
atmosphere and subsurface via (1) net radiation, (2) evaporation and flict. The task is additionally complicated by the complex nature of
transpiration, (3) interception of rainfall and (4) redistribution of mois- the interactions between land, atmosphere and the subsurface (Dai
ture via root water uptake (Maxwell and Miller, 2005; Kuffour et al,, et al., 2003). Assisting land cover decision-making with computational

2020). As a result, catchments with the same geomorphology but
with varying land cover are likely to exhibit different local climatic
properties, such as diurnal temperature ranges, as well hydrologic
conditions on top of and below the surface (Siriwardena et al., 2006;
Mao and Cherkauer, 2009). Ultimately, land cover and its spatial
arrangement affects water resource availability in river basins thus
impacting different sectors such as food and energy production as well

models may therefore provide unreliable guidance if these models are
unable to describe those interactions with sufficient level of fidelity.
On the other hand, detailed and thus computationally expensive mech-
anistic models are likely to generate high computational overheads
which might render them inapplicable in decision making frameworks.
However, recent advancements in the accessibility and the affordability
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of high performance computing (HPC) combined with parallelization
of numerical solvers, e.g. Richards et al. (2005), Kollet and Maxwell
(2006), Shen and Phanikumar (2010) enable gradual introduction of
rigorous physically-based simulation models into quantitative decision
making frameworks. Another barrier to overcome, when it comes to
mechanistic hydrologic models, is the increased number of parame-
ters and measurements required for their identification in comparison
to simpler e.g. behavioural models. Under a shortage of a sufficient
amount and quality of calibration data, we may end up with models
with potentially large prediction uncertainty even though they are more
physically sound. This topic, although not the subject of this discourse,
has been addressed in great detail in Beven (2007, 2019).

Hydrologic models range from lumped (Siriwardena et al., 2006;
Delgado et al., 2010; Tong et al., 2012), to semi-distributed (McColl
and Aggett, 2007; Hundecha and Béardossy, 2004; Choi and Deal, 2008;
He and Hogue, 2012) and distributed (Kollet and Maxwell, 2008; Mao
and Cherkauer, 2009; Wijesekara et al., 2012; Condon and Maxwell,
2013; Mikkelson et al., 2013; Penn et al., 2016; Bearup et al., 2016;
Markovich et al., 2016) and can be implemented within domains of
different sizes from hill-slopes (Mikkelson et al., 2013; Penn et al.,
2016; Bearup et al., 2016; Markovich et al., 2016) to whole catch-
ments (Hundecha and Bardossy, 2004; Siriwardena et al., 2006; McColl
and Aggett, 2007; Choi and Deal, 2008; Kollet and Maxwell, 2008; Mao
and Cherkauer, 2009; Delgado et al., 2010; He and Hogue, 2012; Tong
et al., 2012; Wijesekara et al., 2012). The cited studies report strong
links between land cover and hydrologic characteristics of a watershed
and water budgets, e.g., total overland flow and evapotranspiration
(ET), as well as its dynamic response, e.g., short- and long-term storage
and memory. Hundecha and Bardossy (2004) observed a reduction in
peak runoff and total runoff volume resulting from afforestation. Tong
et al. (2012) concluded that the already prominent impacts of land
cover change on the quantity and quality of water resources are further
amplified under climate change. Choi and Deal (2008), He and Hogue
(2012) investigated the impacts of urbanization on water resources
using a semi-distributed hydrologic model with land cover types having
aggregated vegetation and soil permeability characteristics and con-
cluded that urbanization caused decreased base flow and groundwater
recharge in the watershed. Wijesekara et al. (2012) demonstrated long-
term impacts of land cover changes on hydrologic processes in a
watershed in Canada. Oztiirk et al. (2013) used the model developed
by Wijesekara et al. (2012) to conclude that the water budget was
most sensitive to variations in precipitation and conversion between
forest and agricultural lands. Julian and Gardner (2014) reported that
the characteristics of runoff patterns also depend on the watershed
scale with small watersheds being driven by precipitation whilst big-
ger watersheds being more dependent on watershed processes such
as short and long term storage and memory. However, these studies
did not report on (a) how watershed hydrology is also dependent on
spatial configurations of land cover within the catchments nor (b) on
which processes drive the spatially distributed interactions between
land cover and hydrology.

The latter of the two above research questions has been explored
in several other studies performed with detailed mechanistic mod-
els providing physical description of surface and subsurface hydrol-
ogy and vegetation-dependent energy fluxes on the land surface us-
ing 2D hillslope models. These studies demonstrated the complexity
of how vegetation interacts with soil and atmosphere. Consequently,
a compelling case was made for advancing integrated land cover-
hydrologic modelling frameworks via replacement of conceptual mod-
els with mechanistic models that can describe the intricate processes
governing the interactions between the surface and the subsurface.
Some of the notable findings of those studies are described below. Kol-
let and Maxwell (2008) applied a 3D variably saturated groundwater
flow model ParFlow (Ashby and Falgout, 1996; Jones and Woodward,
2001) coupled with the Common Land Model (CLM) (Dai et al., 2003)
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to study connections between groundwater dynamics and land sur-
face energy balance components and demonstrated a strong coupling
between a number of energy variables and the time-varying water
table depth (WTD). The authors found a critical WTD range, related
to vegetation root depth, where a strong coupling exists between
groundwater and land-surface processes. Kollet and Maxwell (2008)
reported that, additionally, soil heterogeneity had a strong influence
on ET during dry periods in which ET became limited by moisture
in the shallow subsurface. Markovich et al. (2016) applied the same
model to alpine hillslopes and found that the responses were sensitive
to the unsaturated zone retention parameters, which in the case of
alpine systems could indicate a mix of matrix or fracture flow. The
inter-connectivity between groundwater and land processes was further
explored in the context of water management by Condon and Maxwell
(2013) who connected an optimization-driven water allocation model
to ParFlow. The study demonstrated the added benefits of fully in-
tegrated water management tools on a case study where spatial and
temporal variability in soil moisture predicted in the hydrologic model
drove water allocations for irrigation.

Hydrologic and land use models were also embedded within multi-
objective optimization frameworks. The results showed trade-offs be-
tween different bundles of land use decisions and water-related objec-
tives. However, the number of such studies to date have been limited
and focused on agricultural applications. One of the notable studies
was done by Lautenbach et al. (2013) who investigated optimal trade-
offs between biodiesel production, food crops production and water
quality and quantity on a catchment level using the integrated river
basin model SWAT (Arnold and Fohrer, 2005) connected to NSGA-
II (Deb et al., 2002) multiobjective evolutionary algorithm. Fowler et al.
(2015) created a multiobjective optimal decision making framework
for selecting crop types in a watershed using the MODFLOW ground-
water flow model integrated with supply-and-demand components of
irrigated agriculture in order to maximize revenue, minimize water
use and maximize demand satisfaction. The authors found optimal
trade-offs between the objectives and calculated the respective areas of
each of the three crop types for each trade-off. The above two studies
demonstrated the benefits of multi-objective optimization with coupled
hydrologic-land models. These studies described land use allocation
with macroscopic quantities such as fractions of area per individual
land use type or type of land use per cell. What the studies were
not able to demonstrate is how these different land uses should be
spatially arranged within catchments, due to the limitations imposed by
the hydrologic-landuse models being used. The need for sophisticated
hydrologic models in land use optimization was suggested by He and
Hogue (2012) who stated that land use decision making requires hy-
drologic models that consider spatio-temporal watershed characteristics
due to their capacity of enabling more accurate prediction of dynamic
water balances in a watershed.

Among the most recent developments, Sheikh et al. (2021) at-
tempted a multiobjective land use optimization with a distributed
hydrologic model on a catchment scale and reported impact of land
use patterns on surface runoff and sediment load. Several recent papers
approached water energy food (WEF) nexus studies with multiobjec-
tive optimization methods complemented with different methodologi-
cal improvements. For example, Guo et al. (2022) used a distributed
multi-objective uncertain optimization model to develop comprehen-
sive strategies for agricultural sustainability whilst handling stochastic
and fuzzy uncertainties. Yue et al. (2021), Li et al. (2022), Ren et al.
(2022) performed WEF nexus studies using multiobjective optimiza-
tion. The first two addressed uncertainty through adoption of LR-type
fuzzy numbers, and Me-measure fuzzy chance-constrained program-
ming, respectively, whilst (Ren et al., 2022) introduced objectives
quantifying long-term life cycle. A notable paper was recently pub-
lished by Yang et al. (2023) who used surrogate neural network models
to leverage computational burden of storm water management models
in multiobjective optimization applications. It is likely that in the
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near future, more researchers will adopt such approaches, especially
in combination with explainable deep learning techniques (Ras et al.,
2020) in order to keep computation within feasible time bounds whilst,
at the same time, addressing problem of greater scale.

To our knowledge no study has assessed the impact of feedbacks
between land and the subsurface on the spatial land cover patterns
recommended by multi-objective landcover optimization. We used a
land cover design framework that links a distributed mechanistic hy-
drologic and land surface model with a multi-sector water management
model and connects the two to a multiobjective evolutionary algorithm
(MOEA). For a description of MOEA and multiobjective design, we
refer the reader to Deb (2001), Reed et al. (2013). The framework
allows finding spatial land cover designs that lead to optimal trade-
offs between multiple competing objectives. We show how the spatial
optimized land cover selections change as preferences between per-
formance measures are shifted. Our aims are (a) to demonstrate how
spatial land cover allocation decisions under competing objectives are
influenced by bi-directional interactions between land surface processes
and groundwater dynamics, and (b) to assess which of these processes
have the largest influence on land management decisions. We show that
water table depths affect evapotranspiration differently depending on
the vegetation type which has different root depths, leading to distinct
trade-offs between land cover patterns for different objectives related
to water, energy, food and environment.

2. Methods

The flowchart visualizing how the distributed hydrologic model, the
water resources model and the multiobjective optimization algorithm
are connected, is shown in Fig. 1. The hydrologic model produces
runoff as a response to atmospheric forcing and as a function of
hydrologic parameters and land cover allocation. The runoff becomes
an input to the water resources model creating a one-way interaction
between both model components. It is also possible to create a two-
way closed-loop interaction by making decisions in the water resources
model such as water abstractions that become sink terms in the hy-
drologic model (dashed arrow in Fig. 1). The selected outputs and
state variables from both models are used to formulate design criteria
which become objective functions for the multi-objective optimization
algorithm. Because objectives are conflicting, improvement of one ob-
jective causes deterioration of at least one other objective. Therefore,
the optimizer searches not for a single optimal land cover allocation
(solution) but for the set of Pareto optimal solutions. A solution is
said to be Pareto optimal or nondominated, if none of the objectives
can be improved without degrading some of the other objectives. To
ensure that the results are close to the true Pareto surface, i.e. a
global set of optimal solutions is found, the optimization procedure is
initialized from multiple starting points (seeds). Those individual sets of
nondominated solutions are filtered to produce a portfolio of optimal
land cover configurations, which can be further explored in different
contexts related to the different objectives.

2.1. Theoretical background

On the land surface, mass and heat exchange processes driving the
watershed hydrology are dependent on land cover and on groundwater
levels, as conceptually described in Fig. 2. The schematic is borrowed
from Kollet and Maxwell (2008) who divided the hillslope into three
zones characterized by the availability of water for evapotranspiration
at the land surface. The schematic illustrates, from a conceptual point of
view, why watershed hydrology is dependent on spatial configurations
of land covers and consequently, why distributed hydrologic and land
models may be required in multi-criteria land cover and land use
design. The rates of evapotranspiration (ET) change with groundwater
levels differently for different types of vegetation as a result of an
interplay between water availability and rooting depth. In Zone 1,
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the water table is shallow and ET is never water-limited. In Zone 2,
access to groundwater by some of the vegetation types such as crops or
grass having shorter root depths become water limited whilst biological
activity of other vegetation types such as trees remains not water-
limited. In Zone 3, groundwater is deep and thus disconnected from
the land surface, resulting in land processes being less dependent on
subsurface hydrology. A more thorough explanation of the influence
of groundwater dynamics on land surface processes in a distributed
coupled hydrologic-land model can be found in Kollet and Maxwell
(2008).

2.2. Computational implementation

The multiobjective optimization framework proposed in this paper
was implemented by connecting two standalone models into an inte-
grated simulator: (a) a distributed variably saturated groundwater flow
simulator ParFlow (Ashby and Falgout, 1996; Jones and Woodward,
2001) coupled with a land surface model CLM (Dai et al., 2003; Oleson
et al,, 2010) (b) a free open-source Python-based water resources
modelling library Pywr (Tomlinson et al., 2020). The code for con-
necting Pywr with ParFlow is written in Python. In each simulation
run, ParFlow is called as an external process from within Python using
subprocess.run. After successful execution of the ParFlow model,
runoff time-series are extracted from ParFlow’s output files. Pywr,
which is written in Python, is then executed using the extracted runoff
data as input. The simulation environment for sequential execution
of ParFlow and Pywr is wrapped by the wrapper class that facilitates
exchange of data between both models and the MOEA algorithm. In
each model evaluation, MOEA receives objective function values from
both models and sets the configuration of land covers which are then
written into Parflow’s land cover input file using Jinja templating
engine (Jinja Templating Engine, 0000).

2.2.1. ParFlow/CLM

ParFlow/CLM models variably saturated subsurface flow with over-
land flow (Kollet and Maxwell, 2006) in a fully coupled manner and
captures the functional relationships between groundwater dynamics
and water and energy fluxes on land surface (Maxwell and Miller,
2005; Kollet and Maxwell, 2008) by replacing the soil column/root-
zone soil moisture formulation in CLM with the ParFlow formulation
leading to more realistic behaviour that more closely matches obser-
vations (Maxwell and Miller, 2005). ParFlow implements Richards’
equation for variably saturated 3D subsurface flow and shallow water
equations for surface flow. The capabilities of ParFlow to simulate
coupled surface-subsurface flow are described in detail in Kuffour
et al. (2020). CLM models vegetation processes describing energy and
water exchange between surface and atmosphere as plant function
types specified by optical, morphological and physiological properties.
CLM accounts for the thermodynamic equilibrium of the soil air at
the interface with the matrix potential and turbulent transport based
on the Monin-Obukhov similarity theory (Monin and Obukhov, 1954).
The phenological states of vegetation types e,g, the growth phase
and the ripening phase of crops, are simulated via the leaf area in-
dex (LAI) and steam area index (SAI) based on their maximum and
minimum values and an empirical parameterization resulting in time
varying evapotranspiration over the growing season. The root density
distribution in the subsurface is modelled with a sum of exponential
functions and is uniquely parameterized for different land cover types.
A detailed description of the land processes included in the ParFlow’s
CLM implementation can be found in Maxwell and Miller (2005).
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Fig. 1. Flowchart of the proposed approach for multi-criteria optimized land cover design using a distributed hydrologic-land model and a distributed water resources model.
Parallelograms indicate inputs and outputs. Dashed arrow indicates feedback connection from the water resources model to the hydrologic model which the framework enables

but which has not been explored in the case study.
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Fig. 2. Schematic of a hillslope borrowed from Kollet and Maxwell (2008) showing a typical groundwater table depth profile in relation to surface elevation indicating three
distinct zones with shallow (Zone 1), intermediate (Zone 2) and deep (Zone 3) groundwater levels with regards to root zone depth. The root zone depth is not drawn to scale and

the groundwater table profile is drawn arbitrarily.

2.2.2. Pywr

Pywr (Tomlinson et al., 2020) is a model library for the simulation
of managed water resource systems. It uses a linear-programming
formulation to simulate least cost water allocations at each simulation
time-step as a function of allocation penalties, rules and constraints. In
this case study, Pywr is used for calculating water mass balances in a
hydroelectric reservoir, the extent of flooding in a stretch of the river
connecting runoff from the hillslope to the hydroelectric reservoir, and
the amount of HP generated in the hydroelectric reservoir.

2.3. Case study

The conceptual multi-sector human-natural system design problem
described in this paper is applied to a simple synthetic system. Five
conflicting socioeconomic dimensions are implemented in the multi-
objective optimization. The water resources dimension is represented
with two objectives: (1) related to the propensity of the system to
flood, and (2) related to total annual runoff volume. The latter quantity
correlates with hydropower production in the hydroelectric reservoir.
(3) The second energy dimension is solar power potential which is
set to be proportional to the area of bare soil in the catchment. It is
assumed that land surface underneath solar panels in our hypothetical
semi-arid area (see Section 2.3.3) will eventually become barren due to
lesser availability of sunlight and elevated levels of heat. (4) The food

production dimension is approximated by the area of the catchment
covered with rain-fed agriculture. (5) A proxy for ecosystem health
quantifies the number of distinct land cover types within the catchment
excluding bare soil.

2.3.1. Case study model structure

The structure of ParFlow/CLM and Pywr models implemented in the
case study and the connections between the models and the multiobjec-
tive evolutionary algorithm (MOEA) are visualized in a block diagram
in Fig. 3.

The computational domain of ParFlow/CLM is a 2D hillslope, which
simplifies the analysis and interpretation of results compared to a 3D
catchment, especially with regards to the relationships between lateral
subsurface flow, WID and ET, by removing one spatial dimension,
whilst still retaining the required subsurface flow complexity. The hill-
slope is divided into ten cells indexed from 0 to 9. The model interacts
with the atmosphere via bi-directional exchange of the energy and
water mass fluxes at the land surface and is linked with the upstream
parts of the catchment via base flow g,. The terrain has a slope that
is sufficiently large to induce groundwater limited conditions in the
upstream sections of the hillslope.

The Pywr water allocation model is represented by a graph of
connected nodes with directed edges representing transfers of water
between the nodes following set rules and priorities. The city node
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Fig. 3. Block diagram describing the structure and the flow of information between all components of the multi-criteria land cover design model implemented in the case study.

representing a river section with a weir is modelled as a long shallow
trapezoidal reservoir with an overflow. The amount of overflow is
proportional to 4% where h is the height of water above the weir. The
inclined sides of the reservoir represent the river banks. The reservoir
node models a hydroelectric reservoir which stores and directs the
water to a hydropower turbine node. The turbine node calculates the
generated hydroelectric energy as a function of water volume and the
difference between turbine elevation and water level in the reservoir
node. The flow of water g p is allocated to the turbine node in every
time step following a release control curve that defines the relationship
between ¢y p and the volume of water in the reservoir V. In case the
volume of water exceeds the reservoir’s capacity and the calculated
release exceeds the maximum allowed throughput of the turbine, the
excess water g is directed to the estuary via the spill node. The rain
and the evaporation nodes model the additional sources and sinks of
water due to precipitation g, and evaporation ¢, from the water surface,
respectively. Rain and evaporation nodes do not feature in the city node
due to its small surface area and thus, negligible effects of surface-
dependent rain and evaporation processes on the overall water mass
balance. The rain source g, and evaporation sink ¢, are derived from
the meteorological input time-series that drive the hydrologic response
of ParFlow/CLM. g, is calculated directly from rainfall whilst g, is
computed using the Penman-Monteith equation (Penman and Keen,
1948; Allen, 2005). The input g;, to Pywr is equal to the daily average
of the hourly runoff time-series output from ParFlow/CLM. After ev-
ery simulation (model evaluation) of the coupled ParFlow/CLM-Pywr
model values of all five objective functions f;(x) (see next section) are
calculated and passed to the MOEA as a vector f(x). In each iteration,
MOEA adjusts the 10 x 1 input vector x of land cover types and passes
the updated sequence x,,,,, to Parflow/CLM.

2.3.2. Optimization implementation

Out of five objectives three are calculated in ParFlow/CLM: number
of cells with crops f3, number of cells with bare soil f,, and land cover
diversity fs. The remaining two objectives, i.e. annual hydropower
production f, and flood extent f,, are calculated in Pywr in the turbine
and in the city node, respectively. The multiobjective optimization
problem (MOP) is formulated as follows:

{13, [,0, f3(), [4%), fs(x)} x € Q @

max f(x) =

where ©Q denotes the solution space, i.e. all possible land cover configu-
rations in the hillslope, f;(x) denotes the ith objective function and f (x)

denotes the set of all objective functions for solution x. x is represented
as a 10 x 1 vector in which each element x;, for j = 0,...,9, defines
the type of land cover allocated to the jth cell. The land cover type
is encoded as an integer value, i.e. x = 0 for mixed forests, x 1
for grasslands, x 2 for croplands and x 3 for bare soil. The
mixed forest type in CLM is parameterized to represent a mixture of
coniferous, deciduous and evergreen broad-leaved species. Grasslands
and croplands represent vegetation types with short root depths (RDs).
The five objective functions are defined as follows:

365

[10=24%1077 Y npgdfyp(x) (H*
k=1

—z7) ()
where q’;[ pand H k are, respectively, flow rate through hydropower
turbine and water level in the hydroelectric reservoir in kth daily
timestep, z; is the turbine elevation, #, is the turbine’s total efficiency,
p is the water’s density and g is the gravitational constant. 2.4 x 1077 is
the conversion coefficient required to obtain hydropower production
in MWh assuming that all variables in the hydropower equation on
the right side of the summation symbol are given in SI units. The
flow released from the reservoir to the turbine ¢* up = fup ( ,’; P) is
calculated for each timestep in Pywr using a piecewise linear release
curve fyp relating the released flow to the volume of water in the
reservoir.

frx) = ,365) 3

max (=1 x A%,,,00)  Vke (...

The flooded area in kth timestep A’}Iao , 1s multiplied by —1 to minimize
the extent of flooding since the problem is posed as a maximization
problem. A, is calculated in the city node using a bathymetric
curve Aflaod J f1o0d (Vuty
geometric dimensions of the reservoir and VC’;W denotes the volume of
water stored in the city node in kth timestep.

Using Iverson bracket notation

0= [x=2]

XEX

) where f,,4(*) is a function derived from

4

calculates the number of cells in solution x allocated to rain-fed crop-
lands, which are coded in the algorithm with integer number 2. Simi-
larly,

fi®)= Y [x=3]

xXex

)
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Fig. 4. Time-series of daily-average values (black solid line) and hourly variations (blue shaded area) of the selected meteorological variables. From top to bottom: precipitation
P, temperature 7, specific humidity S H, short-wave radiation R; and long-wave radiation R,.

describes the number of cells in solution x allocated to bare soil.
(6)

where card ({-}) denotes cardinality of a set, models land cover diversity
as a number of unique land cover types in the solution x excluding bare
soil.

For this search-based design application, we used a dominance
based many objective evolutionary optimization algorithm called NSGA-
III (Deb and Jain, 2014; Jain and Deb, 2014).

fs(x) =card({x € x| x # 3})

2.3.3. Model inputs and parameters

Five important meteorological variables out of 8 variables in total
that form the input to ParFlow/CLM-Pywr are plotted in Fig. 4. Due to
high computational complexity of our study imposed by ParFlow/CLM
and MOEA, the input timeseries were limited to a single year at an
hourly time-step. The meteorological inputs are representative of a
subtropical semi-arid zone. This setting is chosen to allow testing
the sensitivity of land and subsurface interactions in an environment
exhibiting high variability in atmospheric conditions such as inter-
and intra-day temperatures and solar irradiation as well as sporadic
precipitation patterns with periods of droughts. Catchments in semi-
arid zones are characterized by high temporal variability of various
hydrologic variables that drive the processes on the land surface, such
as soil moisture content and water table depth (WTD). Consequently,
the vegetation-driven energy fluxes at the surface may vary signifi-
cantly in response to changes in evapotranspiration, throughfall and
infiltration, thus having an impact on subsurface hydrology. Based on
this setting, we are able to test the model’s behaviour under a range
of conditions with ET intermittently limited by shallow soil moisture
deficits and with seasonal water shortages affecting water table levels.
We shall see that as table level depths affect ET differently depending
on the vegetation type, as illustrated conceptually in Fig. 2, interesting
tradeoffs emerge between land cover patterns for different objectives.

The plotted variables, from top to bottom are: precipitation P,
temperature T, specific humidity SH, short-wave radiation R, and
long-wave radiation R;. The catchment is characterized with high
shortwave radiation with an average annual value of approximately
300 W/m? and slight and moderate rainfall throughout the year with
longer dry periods in the winter months. The temperature in degrees

Celsius ranges from high and mid 30s in summer months to small
negative values in winter months, with an annual average of approxi-
mately 18°C. Humidity, when converted from specific to relative, ranges
between 30% and 85% depending on the period of the year. The
hillslope also receives base flow g, = 120 m?/d equivalent to flux
v, = 0.0288 m/h uniformly distributed along the bottom boundary
of the hillslope. Base flow represents groundwater contribution from
hypothetical upstream sections of a larger catchment within which our
study is situated.

The parameters of ParFlow, CLM and Pywr models are listed in Ta-
ble 1. The hydraulic conductivity is representative of typical medium to
coarse sands whose hydraulic coefficients range between 3 x 104 m/h
and 1.8 m/h for medium sands, and 22 m/h for coarse sands. The
porosity is in the upper end of values for sandy soil types whose
porosities typically lie between 0.25 and 0.50. Soil heterogeneity was
not modelled in order to allow easier interpretation of final results. The
Manning’s coefficient n;, = 0.20 s/m'/? set for the hillslope is represen-
tative of forests and shrublands whilst n, = 0.03 s/m'/3 set for the river
section is characteristic of coarse-sand river bed (Arcement and Schnei-
der, 1989). The parameters of the CLM model listed in Table 1 were as-
signed default values set in ParFlow/CLM (Maxwell and Miller, 2005).
Vegetation classes implemented in ParFlow/CLM follow IGBP land
cover type classification (IGBP, 0000) and additionally include an addi-
tional land cover type representing bare soil. The parameters of all veg-
etation classes are provided as supporting data in file drv_vegp.dat.
The relationship between the volume and the water level, as well as the
water surface area for the hydroelectric reservoir are provided in two
bathymetric curves 4 = h(V) and A = A(V). For a vector of volumes
V = (0,14650,29301,43951,58602, 73252, 87903, 102553) m?, h(V) =
0,5,10,15,20,25,30,35) m and A(V) = (1875,2150,2440,2743,3062,
3394,3741,4102) m?.

2.3.4. Computation

The optimization algorithm NSGA-III (Deb and Jain, 2014; Jain
and Deb, 2014) was implemented in a framework for evolutionary
computing in Python, called Platypus (Hadka, 2015). Parallelization
support in Platypus allowed us to perform the study on multiple com-
puter nodes using message parsing interface (MPI) with Python’s native
mpidpy (MPI4PY, 0000). All simulation and optimization runs were
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Table 1
Parameters of the integrated ParFlow/CLM and Pywr model.
Parameter Value Unit
ParFlow
Domain geometry (/,, 1y, 1) 1000, 100, 10 m
Number of cells (n,, n,, n,) 10, 1, 10 -
Slope of the hillslope section (S,) 0.03 -
Slope of the river section (S,) 0.001 -
Saturated hydraulic conductivity (K) 1 m/h
Porosity (¢) 0.415 -
Van Genuchten parameters (a, n) 1,2 1/m, —
Residual saturation (S,) 0.2 -
Specific storage (S,) 10X 107 1/m
Manning’s coefficient on the hillslope (n,) 5.52x 1073 h/(m'/3)
Manning’s coefficient on the river bed (n,) 8.333 x 107¢ h/(m'/3)
CLM
Maximum allowed dew (dewmx) 0.1 mm
Soil layer thickness discretization (scalez) 0.025 m
Length scale for K; decrease (hkdepth) 0.5 m
Fraction of model area with high water table (wtfact) 0.3 -
Max transpiration for moist soil (trsmx0) 10.0 mm/s
Wilting point potential (smpmax) -1.5x10° mm
Roughness length for soil (zInd) 0.01 m
Roughness length for snow (zsno) 0.0024 m
Drag coefficient for soil under canopy (csoilc) 0.004 -
Pywr
Maximum reservoir volume (V,,,,) 102553 m?
Water level at maximum fill (H,,,,) 35 m
Turbine elevation (z,) 1 m
Turbine efficiency (1,) 0.85 -
Reservoir control rule: flows (qp) 0,150,400,1000,2000,3500 m3/d

volume fractions:

0.0,0.2,0.4,0.6,0.8,1.0 -

conducted on a high performance computing (HPC) cluster hosted at
the University of Manchester. The study was run on 144 cores using
high performance nodes of 2 x 12-core Intel Xeon E5-2690 v3 @
2.60 GHz + 128 GB RAM. Parallelization was implemented by dividing
the population of candidate solutions inside the genetic algorithm (GA)
into isolated islands of sub-populations. Evaluation of each popula-
tion member required a simulation of one instance of the integrated
ParFlow/CLM-Pywr model. Each simulation was run for the duration
of 3 physical years repeating the one-year-long meteorological input.
First two years of the simulation were used to attain an approximation
of a dynamic equilibrium. The results obtained in the third year of
the simulation were used to calculate the objectives. Each simulation
run was started with the same set of initial conditions. Optimization
was started from 5 randomly generated initial populations (seeds) of
size 132 with 140,000 function evaluations per seed. The running time
of each optimization per seed was approx. 7 days. At the end of all
five optimization runs, non-dominated sorting was performed on the
nondominated solutions collected from all five seeds. The final result is
a Pareto-optimal surface composed of 145 nondominated solutions.

A 2-year spinup was sufficient to attain 1% convergence in land
surface variables, i.e. latent, sensible and ground heat fluxes, upward
long-wave radiation, ground surface temperature and bottom layer
temperature. Convergence criterion is set as annual relative difference
between output variables/states in consecutive years. These results are
in agreement with the studies of Ajami et al. (2014), Seck et al. (2015)
which were based on ParFlow/CLM and reported that 2, 9, 6 and
5 years of spin-up were sufficient to achieve 1% convergence between
start and end day of a year-long simulation in groundwater (GW)
storage, unsaturated storage, and water storage within CLM model
and root zone, respectively. Restricting the simulation to 1 physical
year following a 2-year spinup, was required due to (a) significant
execution times of ParFlow/CLM and (b) N P-hard complexity of the
combinatorial optimization problem at hand Serafini (1987).

3. Results and discussion

The results are presented and discussed in three subsections. (1)
We provide plots illustrating tradeoffs between the multiple objectives

of our hypothetical land cover design problem. These plots convey
information about the impact of land cover selection on different
multi-sector services. (2) We illustrate the spatial land cover patterns
generated by the optimization results which show how catchments with
the same aggregate land cover composition but with different spatial
distributions exhibit different hydrologic behaviour. (3) We discuss
which hydrologic and land processes have the largest impact on land
cover selection and present the argument for wider application of
distributed hydrologic-land models in land use planning studies with
water-dependent benefit functions.

3.1. Trade-offs between multiple competing objectives

The tradeoffs between 145 identified nondominated solutions are
visualized in a parallel axis plot in Fig. 5. The objectives are plotted
on the first five axes. The last two axes visualize the auxiliary variables
representing the number of cells with land cover types not used in the
calculation of any of the objective functions. The direction of preference
for each objective is indicated with a black arrowhead positioned at the
top of each axis.

Fig. 5 demonstrates that tradeoffs exist between all five objectives
and different objectives are favoured by different land cover types.
For example, generation of larger amounts of hydroelectric energy,
which is proportional to total runoff volume, comes at the cost of
lower food production, lower land cover diversity and lesser solar
power generation potential. Land cover designs with high hydropower
production are also prone to more flooding since land cover configu-
rations that lead to large annual runoff volumes tend to also produce
higher peak flows. The highest annual hydropower is produced when
most of the land is allocated to grasslands due to grasslands having
the lowest ET out of all four land cover types used in this study.
A negative correlation exists between runoff and total bare soil area
because, conversely to grasslands, this land use type has the highest
ET out of the four land use types considered. Note, in the applied
parameterization of bare soil evaporation, resistance to vapour trans-
port in the soil is neglected, which results in high evaporation rates
at the thermodynamic equilibrium of free water in contact with the
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Fig. 5. Parallel axis plot visualizing trade-offs between the objective functions for 145 nondominated solutions. Black arrowhead at the top of each vertical axis indicates the

direction of preference for the objective value.

atmosphere. Solutions with significant area allocated to crops, thus
benefiting food production, are characterized by moderate hydropower
generation, moderate to high flooding, and small to moderate solar
power (SP) potential. Improving land cover diversity, by definition,
requires a mix of all types of vegetation which have different properties
and favour different objectives. Hence, solutions with high land cover
diversity generate balanced quantities of solar power, hydropower and
crops.

To gain a better insight into the topology of the Pareto optimal
surface, the solutions were also plotted in a Cartesian coordinate system
using three different projections in Fig. 6. The 2D projections in subplot
(b) and subplot (c) illustrate, respectively, the shape of the relationship
between hydropower production and the extent of flooding, and the
relationship between the amount of bare soil and hydropower. The
relationship between hydropower and the extent of flooding is mono-
tonic and concave down with a plateau in the curve suggesting that
above a certain threshold further increase in runoff does not produce
higher peak flows. This suggests a presence of a cluster composed of
combinations of land cover types which produce high overall runoffs
but proportionally lower peak flows. This cluster is marked in the
subplots as Cluster 1. Cluster 1 is composed of nondominated solutions
representing the hillslope covered predominantly with grasslands with
a small fraction of bare soil. Land cover diversity of one indicates
absence of any other land cover types, i.e. forests or croplands. On
the opposite side of the Pareto front lies Cluster 3 composed of non-
dominated solutions generating the least runoff and producing the least
flooding. These solutions represent designs with large area of bare
soil with addition of croplands and forests, and favour solar power
generation at the cost of lower land cover diversity, and hydropower
and crop production. Cluster 2 represents intermediate land cover
design scenarios which benefit all five objectives to similar degrees.
Solutions in Cluster 2 thus have moderate land cover diversities and
moderate hydropower, solar power, and food production potentials as
a consequence of featuring a mix of several land cover types, each
satisfying different objectives.

Interaction between land and groundwater depth is dependent on
the vegetation/soil evaporation ratio resulting from an interplay of a
number of vegetation-dependent parameters such as leaf area index
(LAI) and root depth (RD). Since evaporation from soil and evapotran-
spiration through vegetation are driven by different processes, land uses

with different vegetation/soil evaporation ratios exhibit different dy-
namic responses to changes in atmospheric conditions, such as rainfall,
temperature, radiation or humidity. Dynamic response of a land use to
rainfall will affect how much water is absorbed and evaporated vs how
much recharges the groundwater system and contributes to river flow.
The concave up shape of the curve in Fig. 6 can be explained by these
differences. As grasslands have lower ET than croplands the amount
of water retained in the subsurface in grassland-dominated catchments
is higher, leading to larger overall runoff. However, since grasslands,
compared to crops, evaporate proportionally more from soil than via
transpiration, their response to high intensity short rainfalls is different.
The subsurface under grasslands-dominated land is characterized with
lower GW levels and lower shallow soil moisture. Consequently, in
case of rainfall, less water recharges the groundwater thus producing
moderate increase in river flow. Ultimately, the response of grasslands
is less flashy than that of croplands.

The above results qualitatively agree, on a macroscopic scale, with
the results of the earlier studies based on more aggregated models. In
particular, the results corroborate the findings of Isik et al. (2013), Niu
and Sivakumar (2014) who reported that hydrology of forest dominated
areas was less flashy and with lower average flows whilst average and
peak flow increased for pasture dominated areas. The results also agree
with the findings of Mao and Cherkauer (2009) who reported the lowest
spring total runoff in forest dominated areas due to higher annual
ET whilst grasslands and croplands had higher spring total runoffs
because of their lower ET losses. The outputs presented above result
from aggregating spatially distributed results which can be explored
further and unveil more information about the relationships between
spatial arrangements of land cover and the catchment’s behaviour.

3.2. Spatial distribution of land covers on the hillslope

The three clusters marked in Fig. 6 can also be found through visual
inspection of the heatmaps in Fig. 7 and Fig. 8. These figures describe
how land uses are distributed along the length of the hillslope. All five
heatmaps can be inspected along the x-axis to observe how optimized
land cover patterns change with each objective as well as along the y-
axis to see land cover distribution along the hillslope. To aid the latter,
the plots are divided into two regions in the y-direction, with the border
between the two regions marked with two red pins on opposite sides
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Fig. 6. Three-dimensional scatter plot of the five-dimensional Pareto set approximation constructed from non-dominated solutions (a) and two 2D projections of this Pareto set
approximation visualizing (b) the relationship between hydropower production and flooded area and (c) locations of clusters in the nondominated solution set. The arrows in the

top right corner of the 3D scatter plot indicate the directions of the two 2D projections.

of each heatmap. The upper region corresponds to Zone 3 in Fig. 2
in which groundwater level begins to fall below the maximum root
zone depth, creating water-limited conditions suppressing ET for all
vegetation types. The results in each heatmap are processed along both
directions. Since this case-study is based on a synthetic 2D hillslope,
the results cannot be directly transferred onto a full-scale catchment.
However, they reflect the behaviour of the coupled land-hydrologic
system including its plant functional types in ParFlow/CLM which were
validated in previous studies. This study investigates what processes
are responsible for the identified patterns in the solutions and the
results can be used to provide an indication of potential behaviour
of more complex computational domains representative of real-world
catchments.

The heat maps constitute a complementary source of information to
parallel axis and Pareto surface plots introduced in the previous section.
As the nondominated solutions are individually sorted by the values of
every objective function, they show how optimized spatial land cover
allocations change as one objective is progressively favoured over the
others. The heatmaps allow investigating each solution in a spatial
dimension to answer questions such as whether (a) specific parts of
the catchment favour certain land cover types; (b) certain land cover
types should be positioned next to each other; (c) multiple solutions
exist with the same aggregate land cover areas but different spatial
allocations; and (d) a change in land cover in one isolated place within
the catchment can significantly alter its behaviour. In Fig. 7 there are
a number of solutions which have the same composition of land covers
but produce different runoffs and/or peak flows depending on where
the different land covers are placed within the hillslope.

Figs. 7 and 8 indicate that the preferred location for grasslands and
croplands is in Zone 3. Placing these two land cover types, having the
lowest ET out of all four land cover types considered in this study,
in the part of the hillslope where ET is additionally water-limited,

minimizes total ET, maximizes recharge, base flow and discharge,
and thus maximizes hydropower production. Introduction of croplands
additionally improves the agricultural production objective. For the se-
lected objectives and land cover types, most efficient land cover designs
include a mix of croplands, grasslands and bare soil. Bare soil tends to
appear first in the lower sections of the hillslope in conjunction with
grasslands and crops as, respectively, hydropower and food production
objectives are gradually traded-off for solar power and for mitigating
the risk of flooding.

Looking at Fig. 9 which shows the variability of mean annual WTDs
per land cover type and cell, groundwater level under bare soil is the
lowest out of all four land cover types considered as bare soil has the
highest ET. Consequently, placing bare soil just upstream of grasslands
and croplands creates a drop in the water level further down in the
hillslope creating water-limited conditions for these two land cover
types, ultimately producing overall lowest total ET - lower than if bare
soil was placed at the very top of the hillslope. The information about
the GW levels and its variability for different land cover arrangements
becomes especially useful when groundwater levels are an important
factor in land use optimization, e.g. when one or more objectives are
related to water abstraction from the subsurface.

Since many solutions feature the same number of cells with bare
soil, see upper subplot in Fig. 8], repeated solutions are sorted in the
direction of decreasing runoff. As ET of bare soil is high due to the
applied parameterization, and therefore, water level underneath the
hillslope with predominantly bare soil cover, is low, mixing croplands
and grasslands into catchments dominated by bare soil increases total
runoff only negligibly. For this reason, the optimizer chooses instead
to co-locate bare soil with forests which can evaporate large amounts
of water due to their extensive root system. The preferred strategy
is to improve flood mitigation objective whilst increasing land cover
diversity. As the bare soil area gradually decreases, solutions begin
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Fig. 8. Heatmaps showing land cover allocations on the hillslope for all nondominated solutions sorted, from top to bottom, by number of cells with bare soil, number of cells
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order. The short red lines between Cell 5 and Cell 6 mark the location of the transition between Zones 1 and 2 and Zone 3 - see Fig. 2 for reference.

to feature croplands which further improve land cover diversity and
additionally, benefit the food production objective. Finally, a pattern
emerges where initially bare soil is co-located with grasslands to benefit
runoff and later, with croplands, which, although generate less runoff
than grasslands, benefit agricultural food production objective. This
pattern repeats in steps as the number of cells with bare soil is reduced
one by one while solutions with equal areas of bare soil are sorted in
the direction of decreasing hydropower production.

10

Croplands evaporate significantly less water than forests and bare
soil, albeit more than grasslands. Therefore, land cover designs domi-
nated by croplands tend to produce intermediate hydropower. Earlier
results demonstrated that croplands produce higher peak flows with
respect to total runoff than grasslands, i.e. lead to flashier runoff
responses. What follows, croplands are co-located with bare soil in
order to reduce peak flows and thus, the extent of flooding. If we inves-
tigate land cover allocations in the direction of decreasing agricultural
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production, croplands initially cover an entire hillslope. Gradually, they
are replaced with bare soil thus benefiting solar power and reducing the
risk of flooding at the cost of food production. As previously, bare soil is
preferably placed in the lower parts of the hillslope where ground water
levels are at their highest, while grasslands tend to be positioned in the
upper parts of the hillslope. Scenarios with lower fractions of croplands
in the hillslope feature forests to increase land cover diversity.

It is intuitive that the scenarios with the highest land cover diversity
scores feature a mixture of all land cover types. Interestingly, those
scenarios are also abundant in forests. Inclusion of forests not only
ensures reaching the maximum diversity score of 3 but also improves
the flood control objective due to forests’ high ET potential. Hence, land
cover diversity and flood control objectives are, in this case, positively
correlated.

The preference of a given land cover type over others with relation
to the proximity to groundwater can be partly explained by looking
at Fig. 10 that describes the relationship between ET and its soil
and vegetation evaporation components vs. water table depth (WTD).
While, on average, ET for the considered land use types follows the
order: bare soil > mixed forests > croplands > grasslands, the relative
differences between them are not constant alongside the hillslope.
The benefit of choosing a certain land use type over another for a
given objective may therefore be different in magnitude or even in
sign, depending on where in the catchment the decision is made. For
example, in the parts of the hillslope where groundwater levels are
high, ET of bare soil exceeds that of a forest as shallow soil moisture
dependent evaporation from land dominates over transpiration through
stomatal apertures of leaves. However, once evaporation from land
becomes limited by shallow soil moisture, ET from bare soil decreases
sharply whilst ET of forests remain high as trees are still able to access
ground water at lower levels via their root system. Consequently, if
reduction of runoff is desired, the results suggest that bare soil should
be placed in the lower parts of the catchment because this will lead
to the highest increase of ET overall as well as relative to other land
use types, in particular forests. Other mechanisms impacting spatial
land cover allocations in a catchment include the effects of upstream
decisions on the hydrologic conditions downstream via lateral flow, as
discussed earlier in this section.

3.3. Effects of land cover distribution within solutions having the same land
cover composition

The effects of varying the location of different land cover types
on the hillslope on its hydrologic performance are shown in the left
subfigure of Fig. 11. The figure describes the relationship between two

11
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objectives: the annual HP production and the maximum annual flooded
area for solutions with equal land cover composition but different
land cover arrangements. The remaining three objectives are invariant
to land-cover arrangements as they depend on the total number of
land covers and not on their positions. The figure shows up to 16%
difference in annual HP production among solutions having the same
land cover composition — see solutions with a mix of bare soil and
grasslands. Maximum annual flooded area, which is proportional to
peak flow, is less dependent on land cover arrangements in this exam-
ple, albeit we can still observe differences up to 8%. These variations
are mainly driven by the placement of, first and foremost, bare soil
and to a lesser degree, forests, i.e. the vegetation types associated
with largest ET. The right subfigure of Fig. 11 shows the histograms
and kernel density estimates (KDEs) of the mean distance between
each land cover and the river and corroborates that bare soil and
forests are the two land cover types most spread along the hillslope,
as indicated by their wide distributions. Both are also left skewed
thus indicating the preference for allocating them in the lower part
of the hillslope. On the other hand, grasslands and croplands have
right-skewed distributions, indicating that their preferred placement is
further up in the hillslope. Bare soil is the mostly featured land cover
type in the set of nondominated solution, indicating that bare soil has
the most utility, in our problem formulation, for optimally balancing
the chosen objectives. Given land cover indices j = 1,...,4, the mean
distance d_Ij between each land cover type /; in kth nondominated
solution x*®) and the river has been calculated as the sum of indices i of
cells with land cover /; divided by the total number of cells with land
cover /; allocated in the hillslope. card(-) is a set cardinality operator.

i=

Z(”xgk):lj)

7 i=0

d/. = ” " (7)
card({xf. Ve x® | x® = lj})

In summary, the results show that in order to optimally balance the
applied objectives, the location and combination of the different land
covers types in the hillslope is important, as already reported in War-
burton et al. (2012), Costa et al. (2003) and may be difficult to predict
using expert knowledge due to nonlinear feedbacks of subsurface hy-
drology with the land processes and the lateral groundwater flow that
are hard to envisage without detailed models. In the simulations, these
results depend on the parameterization of evapotranspiration in the
applied model and the representation of hydrology and hydrogeology
of the hillslope or watershed.

3.4. Limitations and future research directions

The main limitation of this study is related to (a) the speed of
execution of ParFlow/CLM and (b) the computational complexity and
multi-dimensionality of multiobjective combinatorial land use opti-
mization. This study showed that even for a rather simple catchment
geometry, restricted pool of available land cover types, and short time
horizons, the number of unction evaluations required by MOEA for
convergence was large enough that the optimization study had to be
run for 7-days on multi-processor architectures.

The first limitation could be mitigated by improving the manner
in which coupled hydrologic/land and water resources models and
MOEAs are spawned across multiple central processing units (CPUs)
and graphics processing units (GPUs) and exchange data with each
other. In this study, the exchange of data between ParFlow and Pywr
happened via binary files which might have slowed down the sim-
ulation execution times by I/0O bound file reading and writing pro-
cesses. Another potential solution could involve researching numerical
schemes for solving hydrologic and energy exchange flux equations that
are stable for longer time steps than currently employed hourly step,
thus reducing the number of computational time-steps required to run
hydrologic simulations.
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The second barrier could be tackled at (a) the algorithmic level via
development of custom algorithms specific to combinatorial land use
optimization problems as well as (b) the choice and fine tuning best-
suited existing algorithms. Application-specific MOEAs might include,
e.g. custom crossover and mutation operators (Mohammadi et al.,
2015) or additional geometric operators (Garcia et al., 2017) that
generate solutions with appropriate compactness, compatibility and
contiguousness properties that satisfy feasibility requirements, specific
to land use planning, directly within the algorithm. On the other hand,
application of constraints within existing GAs could be implemented
e.g. via application of penalty functions to degrade the fitness value
of infeasible solutions or via incorporation of repair mechanisms for
infeasible individuals (Cao et al., 2012).

A promising avenue towards increased scalability of the proposed
framework is in learning surrogate, e.g. deep learning models, which
can emulate the behaviour of models such as ParFlow/CLM at sig-
nificantly higher speeds. The recent advancements in deep learning
proved their applicability of solving high-dimensional partial differen-
tial equations, such fluid dynamic equations — see e.g. Morrison and
Kutz (2022) and assisting with order reduction of highly-dimensional
dynamic models (Baddoo et al., 2021).

4. Conclusion

This study demonstrated the benefits of using a mechanistic dis-
tributed land and hydrologic model combined with a water resources
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model for land use planning in multisector systems. The WEF land cover
design framework attempts to consider the feedbacks between land and
subsurface and the link between hydrology and water management.
Although the study was designed as a proof-of-concept and carried out
on a simplified hillslope model with homogeneous subsurface condi-
tions, it retained the required subsurface flow complexity, including
lateral flow. We hypothesize that the main findings related to impacts
of land cover arrangements on Pareto-optimal solutions will also apply,
in a qualitative sense, to more complex watersheds and we make
suggestions for overcoming the computational challenges this would
imply. Potential extensions to this framework could include (1) land
cover planning with other water-related objectives, such as e.g. erosion
sediment transport, (2) studies with bi-directional interactions between
hydrologic and water resources, e.g., including diversions and ground
water pumping, (3) studies with larger numbers of decision variables,
e.g., for joint optimization of land cover and water management prac-
tices, such as hydroelectric reservoir operation, (4) analysis of impact
of subsurface heterogeneity.

5. Supplementary material

The optimization results can be explored in an interactive manner
and downloaded in CSV format from a web application at https://
drawit-moea-results.onrender.com/.


https://drawit-moea-results.onrender.com/
https://drawit-moea-results.onrender.com/
https://drawit-moea-results.onrender.com/
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