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Terminal stage of highly viscous flow

U. Buchenau *

Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems
(ICS-1), 52425 Jülich, Germany

(Received 2 December 2021; revised 5 June 2022; accepted 14 July 2022; published 1 August 2022)

The shear misfit model for highly viscous flow is based upon a theoretical prediction for its terminal stage in
terms of irreversible Eshelby relaxations in five-dimensional shear space. The model is shown to predict a small
δ-function (Debye peak) in the dielectric spectrum, in agreement with experimental evidence. It is extended to
density fluctuations, and a relation between adiabatic and isothermal compressibility jumps at the glass transition
is derived. The model is applied to high-precision measurements of the shear, dielectric, and bulk relaxation data
in two vacuum pump oils and in squalane, a short chain polymer with a strong secondary relaxation peak. The
terminal stage of aging data in squalane demonstrates that the adiabatic density fluctuations contribute a fast
component to the thermal expansion, explaining why the thermal expansion seems to equilibrate a bit faster than
the dynamic heat capacity.
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I. INTRODUCTION

The highly viscous flow of glass formers close to the glass
transition [1–4] is still a point of contention for different the-
oretical approaches, some of them derived from liquid theory,
but also an increasing number of concepts [5–12] that attribute
the highly viscous flow to thermally activated structural relax-
ations in the glass.

Viscous flow requires the existence of irreversible shear
relaxation processes. There is as of yet no generally accepted
theoretical treatment, but in one of the theoretical concepts
[11], the terminal stage is due to irreversible shear trans-
formation processes in the five-dimensional shear space in
asymmetric double-well potentials, with the asymmetry de-
termined by the different shear misfits of the inner Eshelby
domain [13] or the shear transformation zone [6,7], with
respect to the surrounding viscoelastic matrix, in its two struc-
tural alternatives. One finds an Eshelby region lifetime eight
times longer than the Maxwell time, derived from the Einstein
relation between the irreversible shear fluctuations and the
viscosity.

There is a pragmatic extension of the theoretical analysis
of irreversible Eshelby relaxations to the reversible Eshelby
relaxations at shorter relaxation times [12], taking both re-
versible and irreversible processes to belong to the same
Kohlrausch distribution, the irreversible ones for relaxation
times longer than τc, and the reversible ones for relaxation
times shorter than τc. The extension, denoted here as the shear
misfit model, is able to describe the shear relaxation of simple
glass formers without strong hydrogen bonds and without sec-
ondary relaxation in terms of only three parameters, namely
G∞, τc, and the Kohlrausch exponent β close to 1/2.

*buchenau-juelich@t-online.de

The present paper begins with the further development of
the shear misfit model, replacing the exponential cutoff of the
reversible relaxations at τc by a more realistic one, and show-
ing that it predicts a small δ-function in dielectric and other
spectra. The second aim is the treatment of density fluctua-
tions, deriving their relation to shear and energy fluctuations.
Third, for glass formers with secondary relaxations, one can
reduce its number of temperature-dependent parameters to
three, namely the short-time shear modulus, the terminal re-
laxation time τc, and the amplitude of the secondary relaxation
peak. The model is applied to measurements in two vacuum
pump oils [14] and in squalane, a short chain polymer with
a strong secondary relaxation peak, where there is a happy
combination of high-precision shear relaxation measurements
[15,16] with a high-precision terminal aging measurement
[17].

After this Introduction, the paper proceeds with a discus-
sion of the previous theoretical shear misfit work [11,12] in
Sec. II, correcting three smaller errors in the former papers,
and deriving equations for adiabatic and isothermal density
fluctuations. Section III describes the fit of shear [14–16],
compressibility [14,18], dielectric [14,15], and aging data [17]
in two vacuum pump oils (DC704 and PPE) and squalane
in terms of the shear misfit model. Section IV discusses and
summarizes the results.

II. THEORETICAL BASIS

A. Irreversible Eshelby relaxations

Consider a more or less spherical region of 10–100 atoms
or molecules in the undercooled liquid. It is reasonable to de-
fine a dimensionless shear misfit ε of the region in such a way
that ε2 is the shear misfit energy in units of kBT . According
to Eshelby’s theoretical treatment of this situation [13], about
half of the elastic distortion energy is a shear distortion of
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the region itself; the other half is a more complicated elastic
distortion of the outside, with a large shear component and a
small bulk compression component.

In three dimensions, there are six possible distortions,
one compression and five possible shear strains [19]. Con-
sequently, the Eshelby region can have a shear misfit with
respect to its surroundings in five independent shear misfit
directions.

In thermal equilibrium, the states ε in the five-dimensional
shear misfit space have an average energy of 5/2 kBT in the
normalized distribution,

p(ε) = 1

π5/2
ε4 exp(−ε2). (1)

The prefactor corrects the one of Eq. (3) in the previous paper
[11], a mistake that does not invalidate the results.

The cornerstone of the shear misfit model is the analysis
[11] of the terminal part of the flow process in terms of
irreversible Eshelby region transformations (shear transfor-
mation zones) [6,7,13], which change the elastic shear misfit
of the Eshelby region. Assuming a constant density of stable
structural solutions in five-dimensional shear space, and an
Einstein relation between the irreversible shear fluctuations
and the viscosity η, one finds the terminal relaxation time

τc = 8τM = 8η

G∞
, (2)

where G∞ is the short-time shear modulus, and τM is the
Maxwell time.

The lifetime τ of a given Eshelby region depends strongly
on its elastic shear misfit energy ε2. If this is high, there are
many possibilities for an irreversible decay into a structure
with a smaller elastic shear misfit energy. Integrating over the
states in the distribution of Eq. (1) in terms of the barrier vari-
able v = ln(τ/τc), one finds [11] the normalized irreversible
spectrum

lirrev(v) = 1

3
√

2π
exp(2v)(ln(4

√
2) − v)3/2, (3)

a slightly broadened Debye process around the relaxation
time 1.75 τc, a factor of 14 longer than the Maxwell time.
In fact, the corresponding decay function is well fitted by
the Kohlrausch function exp ( − (t/1.8τc)0.8). Equation (3) is
consistent with Eq. (16) of Ref. [11], and corrects Eq. (10) of
Ref. [12], again a mistake that does not invalidate the results
of this second paper, because the correct equation was used in
the data evaluation.

In the derivation of Eq. (3), three effects are neglected. The
first is the time dependence of the energy ε2 arising from the
other Eshelby processes in the neighborhood, which leads to
a diffusive motion of ε2. This effect causes a narrowing of
the spectrum, because a slowly decaying low shear energy
Eshelby region is able to drift toward faster decay times, and
the opposite happens on the high-energy side.

The second neglected effect is the barrier distribution of the
irreversible processes, which was assumed to be a δ-function
in the derivation of Eq. (3). In the treatment of the reversible
Eshelby relaxations in Sec. II B, it will be seen that there
is good reason to assume a barrier distribution with a rather

large finite width, which ought to lead to a broadening of the
spectrum.

The third neglected effect is the volume change of the
Eshelby region in its irreversible transitions (responsible for
the terminal aging data of the density in squalane [17] used in
Sec. III to corroborate the shear misfit model).

But these three effects do not affect the predicted position
of τc. Since the irreversible Eshelby decay spectrum of Eq. (3)
is able to describe not only the position but also the width of
measured dynamic heat capacity spectra in four glass formers
with Maxwell times determined from shear data at the same
temperature [11,12], it seems probable that the three neglected
effects cancel.

The average decay rate r = 1/τ of the distribution of
Eq. (3) is 1/τc. In this sense, τc can be considered as the
average lifetime of the reversible Eshelby relaxations, and the
appropriate cutoff function for the reversible Eshelby relax-
ations is the Kohlrausch function exp (−(τ/1.8τc)0.8), a result
that is central for the description of the reversible relaxations.

B. Reversible relaxations: Kohlrausch tail and secondary
relaxations

One needs an additional postulate [12] to include the
reversible Eshelby transformations, in the simplest case a
Kohlrausch barrier density proportional to exp(βv) in terms of
the barrier variable v = ln(τ/τc), with a Kohlrausch exponent
β close to 1/2 [20,21]. The postulate is that the Kohlrausch
barrier density of the reversible relaxations extends without
discontinuity or change of slope to barriers with v > 0, which
are irreversible transitions and are responsible for the viscous
flow. Their flow contribution does not diverge, because the
increase with exp(βv) is overcompensated by the rate factor
1/τ = 1/ exp(v)τc.

As already mentioned in Sec. II A, this implies a barrier
distribution proportional to exp(−v/2){1 − exp ( − [exp(v −
ln 1.8)]0.8)} for the irreversible processes, which is not a δ-
function, but rather one with a full width at half-maximum
of about 6 in v, corresponding to a width of two decades
in relaxation times. But the resulting broadening of the irre-
versible spectrum of Eq. (3) might still be small, because in
the derivation of the equation, the lifetime of a single Eshelby
region is an integral over all possible Eshelby transitions.

A reversible relaxation has a factor 0.4409/2 = 0.220 45
weaker contribution to the shear compliance than an irre-
versible one [12], due to two effects. The factor of 2 reflects
the fact that the average shear and compression stress energy
of the surroundings does not disappear in a reversible relax-
ation. The factor 0.4409 stems from the different effects of
the energy asymmetry � = e2

0 − e2 between the initial and
the final state of a structural relaxation for reversible and irre-
versible relaxations, integrated over all possible combinations
[12].

One can describe the reversible shear relaxation processes
of simple glass formers without secondary relaxation peaks in
terms of the Kohlrausch barrier density

lrev(v) = f0 exp(βv)Fc(v), (4)

with the Kohlrausch cutoff function

Fc(v) = exp (−[exp(v − ln 1.8)0.8]) (5)
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and f0 given by

f0 = 0.4409
8 − 4β

3
. (6)

With the exception of hydrogen bonded glass formers
(treated in a separate paper [22]), Eq. (6) with f0 works in
all other investigated molecular, metallic, network, and ionic
glass formers without a secondary relaxation peak. The whole
shear relaxation is described by the three parameters G∞, τc,
and β, with β close to 1/2. No other shear relaxation model is
able to do that.

If one has a secondary shear relaxation peak from changes
of the shape or the orientation of the molecule, these shape
or orientation changes do not contribute to the viscosity. The
viscous flow requires an irreversible change of the molecular
packing, while changes of the molecular shape or orientation
are always reversible in the long run. The gain in shear com-
pliance by a change of the shape or the orientation of the
molecule in an irreversible Eshelby relaxation is lost when
the molecule returns in one of the subsequent irreversible
relaxations to its former shape or orientation.

In these cases, one has to add an appropriate Gaussian
distribution lg(v) to the Kohlrausch barrier density to describe
the secondary relaxation peak [23],

lrev(v) = [ fK exp(βv) + lg(v)]Fc(v), (7)

introducing four more fit parameters, namely the enhancement
factor fK for the Kohlrausch barrier density, the amplitude ag,
the position vg, and the width σg of the Gaussian,

lg(v) = ag exp (−(v − vg)2/2σ 2
g ). (8)

The position vg is related to the central barrier Vg of the
Gaussian by

vg = Vg

kBT
− ln τc + ln τ0, (9)

where τ0 is the microscopic relaxation time of a thermally
activated process between 10−13 and 10−14 s.

The enhancement factor fK is necessary because one ex-
pects an admixture of secondary relaxation processes to the
irreversible Eshelby relaxations proportional to their integral
I = ∫

lg(v)dv, an admixture that does not contribute to the
viscous flow, and thus requires a higher fK . The integral
over the reversible Kohlrausch tail needed for the flow is
2.1 for β = 1/2, so from the ratio of the two integrals over
the reversible processes, one expects the enhancement factor
1 + I/2.1.

In the two examples with secondary relaxation peaks eval-
uated in terms of the shear misfit model [12], one finds indeed
a temperature-independent enhancement factor fs,

fK = 1 + fsI, (10)

but fs is larger than 1/2.1. In squalane, fs = 0.9, as demon-
strated again in the new evaluation of the squalane shear
relaxation data in Sec. III A, and in dibutyl phtalate fs = 4
[the factors are not equal for the two substances, as stated
erroneously in Eq. (17) of Ref. [12]].

With Eq. (10), a glass former with a secondary relaxation
peak has the seven free parameters G∞, τc, β, fs, and the three
parameters of the Gaussian. Of these seven parameters, only

G∞, τc, and the secondary peak amplitude ag are temperature-
dependent. The position and width of the secondary relaxation
peak can be determined from a measurement in the glass
phase.

Having defined lrev(v), one can calculate the complex shear
compliance J (ω) from

G∞J (ω) = 1 +
∫ ∞

−∞

lrev(v)dv

1 + iωτc exp(v)
− i

ωτM
, (11)

and invert it to get G(ω). At ω = 0, the integral in Eq. (11) is
equal to G∞J0 − 1, where J0 is the total recoverable compli-
ance.

C. Full relaxation spectrum, energy, and density fluctuations

The normalized full spectrum of all Eshelby relaxations,
reversible and irreversible, is given by

ltot (v) = 1

8 fK + G∞J0 − 1
[8 fK lirrev(v) + lrev(v)]. (12)

As pointed out in the second theoretical paper [12], the
simultaneous knowledge of irreversible and reversible relax-
ation processes from the shear data implies knowledge of
all Eshelby shear relaxation processes of the substance, and
it enables one to compare with whatever one sees in other
relaxation techniques.

Dynamic heat capacity measurements seem to see mainly
the irreversible processes. The argument is supported by mea-
surements of the dynamic heat capacity in four glass formers,
which are well described by Eq. (3) alone, with τc values
determined from shear relaxation data in the same substances
[11,12].

The comparison of different relaxation times in the two
vacuum pump oils DC704 and PPE [24] shows that the dielec-
tric polarization and the adiabatic compressibility equilibrate
half a decade earlier than both the dynamic heat capacity and
the dynamic thermal expansion. In terms of the shear misfit
model, this implies that the reversible Eshelby relaxations,
which carry only the reversible quarter of the total shear
relaxation, are responsible for most of the dielectric and the
adiabatic compressibility equilibration. The appropriate de-
scription turns out to be an exponential decay of the dielectric
polarization or the density deviation, with the time constant
τd . This exponential decay implies an exponential cutoff Fd (v)
of the full relaxation spectrum

Fd (v) = exp(−τ/τd ) = exp (− exp(v − vd )), (13)

with vd = ln(τd/τc). This cutoff function was already consid-
ered in Ref. [12].

But what was neglected in the earlier work was the effect
of the second irreversible decay of the Eshelby regions, which
occurs after the time 2τc. The quantity that decays with the
time constant τd at this time still has a fraction exp(−2τc/τd )
of its initial value, but then it continues decaying with τd

by the collective effect of all subsequent irreversible Eshelby
relaxations. This “viscous” fraction must appear in the spec-
trum as a δ-function at the relaxation time τd . Therefore, the
normalized spectrum is

ld (v) = l0ltot (v)Fd (v) + aδ(v − vd ) (14)
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with

a = exp(−2τc/τd ) (15)

and the normalization condition∫ ∞

−∞
l0ltot(v)Fd (v)dv = 1 − a. (16)

The adiabatic compressibility spectrum is due to Eshelby
transitions which change the volume V of the Eshelby re-
gion. Such a volume change �V/V is opposed by the shear
resistance of the surroundings (the situation considered in the
shoving model [5]), leading to a diminution c = δV/V of the
volume change. The resulting distortion energy is 2G∞V c2/3
outside and BV c2/2 inside, where B is the short-time bulk
modulus. The force balance leads to the diminution factor
3B/(3B + 4G∞) for �V/V . This reduction factor is exactly
the one between adiabatic and isothermal compressibility
contributions �κad and �κiso from the structural relaxation,
because the outer shear force disappears in the terminal stage
of the flow process,

�κad

�κiso
= 3B

3B + 4G∞
, (17)

where B and G∞ are the glass moduli.

III. COMPARISON TO EXPERIMENT

A. Shear, bulk, and dielectric relaxation

The existence of a small δ-peak in every dielectric glass
former spectrum, a true Debye peak in terms of Debye’s
original meaning, has never been realized in the community,
though it is generally acknowledged for the special case of
monoalcohols [25]. However, with Eqs. (11) and (14), it is
possible to search for it in experiment also in other glass
formers.

To do this, one needs measurements of the shear relaxation
and the dielectric relaxation of the same sample at the same
temperature. Fitting the shear relaxation in terms of Eq. (11),
one gets the Eshelby region lifetime τc and the Kohlrausch β.
According to Eq. (14), that leaves only �ε (the difference be-
tween low- and high-frequency dielectric constant, which can
also be obtained separately from the real part of the dielectric
susceptibility) and the relaxation time τd as free parameters to
describe the dielectric spectrum.

Figure 1 shows the measurement [14] of the dielectric
spectrum in the vacuum pump oil PPE at 255 K, where the
shear spectrum [14] measured at the same temperature is
perfectly fitted with β = 0.484 and τc = 0.209 s. Inserting
these two values, one can make two fits with Eq. (14), the one
with the δ-function (the continuous line in Fig. 1), the other
without (the dashed line). The necessity of a small Debye peak
at the maximum is clearly demonstrated in the magnified peak
region, in the inset of Fig. 1.

One can do the determination a bit differently in order to
check whether the theoretical prediction provides the correct
amplitude of the δ-peak. To do this, one leaves the ampli-
tude a of the δ-peak as a third free parameter. For the five
measurements between 250 and 260 K in PPE [14], the eight
measurements between 214 and 228 K in DC704, and the

FIG. 1. Fit of dielectric data at 255 K in PPE [14] with (con-
tinuous line) and without (dashed line) the Debye peak from the
irreversible processes. The inset shows the dashed line misfit at the
peak.

seven measurements between 254 and 266 K in triphenylethy-
lene [15], one obtains the average values in Table I, which
agree within their error bars with the prediction of Eq. (15).
The results show that even for a weak dielectric such as
triphenylethylene, with a rather short τd , one still can get
an indication of a small δ-function on top of its dielectric
relaxation peak, proving the validity of the shear misfit model.

In the monoalcohols [25], one has the special case of a very
long lifetime τd of the local dipoles, one or two decades longer
than the end of the shear relaxation at the Eshelby lifetime τc,
so according to Eq. (15) the Debye peak at τd dominates the
whole dielectric spectrum.

The validity of Eq. (14) for the description of the dynamic
adiabatic compressibility is demonstrated in Fig. 2 for the
two vacuum pump oils DC704 and PPE, where there is no
secondary relaxation peak, and again the adiabatic compress-
ibility data [14] are measured in the same cryostat and for the
same sample as shear relaxation data. Table II compiles the
fit results for three temperatures in PPE, four temperatures in
DC704, and one temperature in squalane.

In all three substances, one knows from thermal expansion
measurements [17,24] that the isothermal density fluctuations
equilibrate with the terminal relaxation time 1.75 τc. The τd

values for the three substances are a factor of 2–4 shorter,
showing that the adiabatic compressibility equilibrates much
earlier than the isothermal compressibility.

TABLE I. Average values of the dielectric strength �ε, the
relaxation time ratio τd/τc, and the δ-function amplitude a for
five measurements at different temperatures in PPE [14], eight
measurements at different temperatures in DC704 [14], and seven
measurements at different temperatures in TPE (triphenylethylene)
[15]. The measured a-values agree within their error bars with the
prediction from Eq. (15) in the last column.

Substance �ε τd/τc a exp(−2τc/τd )

PPE 1.82 0.89 ± 0.02 0.104 ± 0.006 0.106
DC704 0.31 0.74 ± 0.02 0.048 ± 0.019 0.066
TPE 0.045 0.46 ± 0.02 0.015 ± 0.011 0.013
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TABLE II. Fit results from shear relaxation and adiabatic compressibility in PPE, DC704, and SQ (squalane). �κiso is determined from
�κad via Eq. (17), which together with the B-value in column 5 allows us to calculate the liquid bulk modulus Bl in the last column. For the
role of the secondary relaxation peak in the squalane measurement, see the text.

Substance T G∞ τc τd/τc B �κad �κiso Bl

(K) (GPa) (s) (GPa) (GPa−1) (GPa−1) (GPa)
PPE 255 0.94 0.209 0.62 5.9 0.057 0.069 4.2

257.5 0.91 0.045 0.64 5.7 0.061 0.074 4.0
260 0.87 0.010 0.67 5.5 0.061 0.074 3.9

DC704 218 1.02 0.292 0.72 4.9 0.065 0.083 3.5
220 0.98 0.071 0.65 4.8 0.065 0.083 3.4
222 0.96 0.018 0.65 4.7 0.066 0.084 3.4
224 0.93 0.005 0.66 4.6 0.066 0.084 3.3

SQ 171.65 1.1 4.66 0.29 5.2 0.076 0.098 3.3

The adiabatic compressibility measurement determines the
short-time modulus B and the adiabatic compressibility jump
�κad. Having these, and the short-time shear modulus G∞
from the shear relaxation measurement, one can calculate
�κiso from Eq. (17). In all eight cases in Table II, �κiso

is never more than 30% larger than �κad, showing that the
larger part of the density equilibration occurs in the reversible
Eshelby relaxations. In the third example squalane, one has to
deal with a strong secondary relaxation peak. The new shear
relaxation data in squalane [16] include the measurement of
the secondary relaxation peak at 148 K, about 20 degrees be-
low the glass temperature, allowing for a fit of its parameters
without any disturbing influence of the flow process. Previous
investigations of molecular glass formers in the glass phase
with the much more powerful dielectric spectroscopy [23]
have demonstrated that secondary relaxation peaks are well
described in terms of a Gaussian in thermal activation barriers,

FIG. 2. Fit of dynamic adiabatic compressibility data (a) at 218 K
in DC704 [14], and (b) at 257.5 K in PPE [14] in terms of the
spectrum of Eq. (14) (continuous line).

with a maximum barrier Vg and a full width at half-maximum
that is about Vg/2. Figure 3 shows that, for a microscopic
τ0 = 10−13 s, the data at 148 K in squalane [16] are well
described by Vg = 0.264 eV and a full width at half-maximum
of 0.53Vg, close to the values Vg = 0.27 eV and the full width
at half-maximum of 0.45Vg of the earlier fit [12] of the old data
[15]. The value found for Vg can be understood quantitatively
in terms of a Helfand crankshaft motion [26] in the polymer
chain, as explained in detail in Ref. [12].

The Gaussian description is obviously better than the
Cole-Cole function used in the electric-circuit equivalent
model to fit the shear relaxation data [16], and it has the
additional advantage that the two parameters Vg and full
width at half-maximum can be considered to be temperature-
independent. With this assumption, and a temperature-
independent Kohlrausch β of 1/2, both sets of shear relaxation
data [15,16] were fitted again in terms of the shear misfit
model. Table III lists the four free parameters G∞, τc, ag, and
fK of the new fit for the old data [15]. For the new data [16],
the parameters were the same within experimental error, with
the only difference that the G∞ values of the old data were a
factor of 1.3 larger than the ones for the new data.

Figure 4(a) shows the older shear data of squalane [15] at
172 K. The line is a fit in terms of Eq. (11) with the parameters
G∞, τc, ag, and fK in Table III. Taking fK as a free parameter,

FIG. 3. Secondary relaxation peak in squalane in the glass phase
[16], together with fits in terms of a Cole-Cole function [16] and in
terms of the Gaussian barrier distribution of the present paper.
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TABLE III. Temperature-dependent parameters of the shear misfit model for shear relaxation data [15] in squalane; for the significance,
see the text. The Kohlrausch β = 1/2, the maximum secondary relaxation barrier Vg = 0.264 eV, and the full width at half-maximum of the
secondary relaxation Gaussian 0.53 Vg are fixed.

T G∞ τc ag fK I fs G∞J0

(K) (GPa) (s)
168 1.38 208.6 0.067 1.60 0.67 0.90 4.17
170 1.42 18.9 0.088 1.80 0.89 0.90 4.71
172 1.45 2.25 0.111 1.96 1.11 0.86 5.17
174 1.46 0.35 0.130 2.11 1.28 0.87 5.58
176 1.42 0.075 0.139 2.23 1.35 0.91 5.83
178 1.35 0.0205 0.139 2.27 1.32 0.96 5.87
180 1.21 0.0072 0.121 2.32 1.13 1.13 5.75

one finds Eq. (10) with fs = 0.9 reasonably well confirmed
(see the fs values in column 7 of Table III). Figure 4(b)
displays dielectric relaxation data taken on the same sample in
the same cryostat [15], which show the secondary relaxation
at the same position and with the same width as the shear
data, but with an amplitude that is a factor 0.18 smaller,
qualitatively consistent with the Helfand crankshaft motion
[26], which only turns one C-C bond around but causes a very
sizable local shear distortion. The dielectric data can be fitted
with the shear parameters in Table III, with τd = 1.02τc, but
it turns out that this is no longer an exponential cutoff of the
spectrum. The dashed line in Fig. 4(b) requires a Kohlrausch

FIG. 4. (a) Measurement [15] of G(ω) in squalane; fit in terms
of Eq. (11) with the parameters in Table III. (b) Fit of dielectric data
for the same sample in the same cryostat [15] with Eq. (14), with a
factor of 0.4 weaker secondary relaxation peak; fit of new adiabatic
compressibility data [18] at the slightly lower temperature 171.65 K
in terms of Eq. (14) with a = 0 and a factor 2.6 stronger secondary
relaxation peak than the shear data (see the text).

cutoff, with a Kohlrausch βd = 0.55 at 172 K. Fitting at dif-
ferent temperatures, one finds that the broadening increases
as one approaches the α-β merging of the secondary and the
primary peak.

The same broadening on approaching the α-β merging is
observed in very recent adiabatic compressibility data [18].
Figure 4(b) shows these data at the slightly lower temperature
171.65 K, in which the Kohlrausch broadening exponent is
βd = 0.6 and the secondary relaxation peak is stronger by
a factor 1.77 than in the shear data. Looking at the low-
frequency end of Fig. 4(a), one finds a deviation of the
measured G′(ω) values from the calculated curve toward
higher values. This is not a failure of the shear misfit model,
but rather a polymer effect [28]: Longer polymers develop a
rubbery plateau together with a much higher viscosity, due to
chain entanglements, in this region. The short-chain polymer
squalane shows only a small precursor effect of this rubbery
plateau, but it is naturally an effect that is not taken into
account here. To minimize the influence of the rubbery plateau
precursor effect on the fitted parameters, the fit was only
extended down to about one-third of the peak maximum in
G′′(ω).

FIG. 5. Vogel-Fulcher fit of the values 5τα from the shear relax-
ation data [16] in the electric-circuit equivalent model (open circles),
and of the τc values of the shear misfit model in Table III (full
squares). The value τc = 200 s (full diamond) at 167.73 K is needed
for the fit of the aging data in Fig. 6.

024601-6



TERMINAL STAGE OF HIGHLY VISCOUS FLOW PHYSICAL REVIEW E 106, 024601 (2022)

FIG. 6. (a) Measurement [17] of the density decrease of squalane
at 167.73 K on cooling from a 0.06 K higher temperature (down
triangles), and of the density increase on heating from a 0.06 lower
temperature (up triangles), plotted with the opposite sign to demon-
strate the near equality of both curves. The theoretical predictions are
calculated for τc = 200 s, the dashed curve only for the irreversible
spectrum of Eq. (3), and the continuous curve adds the adiabatic
spectrum fitted to the data in Fig. 4(b) with an appropriate factor
(see the text).

Figure 5 shows that the fitted values of τc in Table III follow
the Vogel-Fulcher law

ln τc = 1318

T − 134.4
− 34. (18)

The τM values of the electrical-circuit equivalent model
evaluated from the new squalane shear relaxation data [16]
are a factor 1.6 larger than the τc/8 of the shear misfit model,
due to a smaller G∞ and a larger viscosity in these fits. Taking
this factor into account, one gets good agreement between the
temperature dependence in the two fits.

B. Terminal stage measurement in squalane

The very recent beautiful high-precision aging measure-
ment in squalane [17] demonstrates beyond any possible
doubt the existence of a terminal stage of the glassy relaxation.
The measurement determines the change of the capacitance
of a planar squalane sample between two metal plates after a
small temperature change as a function of time.

Squalane is a happy choice for this kind of measurement,
because its low-frequency dielectric constant is only �ε =
0.014 higher than its high-frequency dielectric constant 2.15.
Therefore, the temperature dependence of its dielectric con-
stant is negligible, and the change of the capacitance reflects
exclusively the density change.

Figure 6 shows the aging data, obtained at 167.73 K, where
the terminal stage of the aging lies between ten and several
thousand seconds. The down-triangles show the density de-
crease on cooling down from a 0.06 K higher temperature, the
up-triangles the density increase (but with the opposite sign
to demonstrate the near identity) on heating from a 0.06 K
lower temperature. The equilibrium density decay function at
167.73 K must lie between these two data point groups.

If one adapts τc = 200 s, the dashed curve calculated from
the irreversible spectrum of Eq. (3) does indeed fall between
the data down to 100 s, but then levels off to a constant value,
leaving the smaller earlier part of the total decay unexplained.
The continuous line in Fig. 6, which provides a good fit of
the whole measured curve, is obtained by adding the decay
from the adiabatic spectrum in Fig. 4(b) with an appropriate
factor. This fit ascribes a fraction 0.3 of the total decay to the
adiabatic spectrum, while the fraction 0.7 is attributed to the
irreversible processes.

IV. DISCUSSION AND CONCLUSIONS

A. Comparison of the two shear relaxation models

The two models applied to the shear relaxation data
of squalane [15,16]—the electric-circuit equivalent model
[16,27] (identifying the voltage with the shear stress and the
current with the shear compliance) and the shear misfit model
described here—have much in common. Both are models for
the time-dependent shear compliance with the Maxwell time
as one of the parameters, both assume a Kohlrausch β of
1/2 with a cutoff at low frequency, and both describe the
secondary relaxation peak as an independent feature.

An even deeper common basis is that both models are
electric-circuit equivalent models, which in rheological terms
means that both models are a combination of springs and
dash-pots. The reversible l (v)dv corresponds to a resistor in
series with a capacitance (mechanical equivalent: a spring
parallel to a dash-pot), and the integral over v corresponds
to a combination of all these elements in parallel.

The two shear relaxation models differ in a different cutoff
for the reversible relaxations at small ω, proportional to

√
ω in

the electric-circuit equivalent model and with the Kohlrausch
cutoff of Eq. (4) in the shear misfit model, with the advantage
of the Kohlrausch cutoff that it describes the dynamic heat
capacity data [11,12].

Obviously, the shear relaxation data allow one to choose
between an infinite number of possible electric-circuit equiv-
alent models. To decide between them, one needs additional
information, such as that provided by the distinction of re-
versible and irreversible processes in the shear misfit model.

B. Irreversible jumps and terminal stage

The value of the concept of irreversible relaxations, the
basis of the shear misfit model, lies in their different contri-
butions to the shear compliance and to the time-dependent
heat capacity or density. Under a shear stress, they contribute
again and again to the viscous flow, without end. But after
a small temperature change, they jump directly into the new
equilibrium.

Therefore their spectrum, of which only the integral enters
into the viscosity, becomes visible as part of the terminal
stage in the dynamic heat capacity, and in the time-dependent
density change of Fig. 6. The fact that this spectrum describes
the terminal stage with high accuracy, with a τc which agrees
within the error bars with the one extrapolated from shear
relaxation data, provides convincing proof for its theoretical
explanation in terms of irreversible Eshelby relaxations in the
five-dimensional shear space [11].
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Both dynamic heat capacity and dynamic thermal expan-
sion contain the irreversible spectrum of Eq. (3), but they
differ in the contribution from the reversible Eshelby re-
laxations. The terminal expansion data [17] of squalane in
Fig. 6 are well fitted in terms of a coupling factor for not
only irreversible relaxations but also the reversible relax-
ations that dominate the adiabatic compressibility. The fact
that the reversible relaxations have a smaller contribution to
the dynamic heat capacity data than to the dynamic thermal
expansion becomes visible in their slightly longer relaxation
times (a factor about 1.15) in DC704 and PPE [24].

One should be aware that the terminal stage of the shear
misfit model is often, but not always, the terminal stage of
the highly viscous flow. It is instead the terminal stage of the
structural energy and density equilibration. In this role, it also
appears in soft matter, like polymers or rubbers, where the
relaxation curves after a temperature step look quite similar
to Fig. 6, and even the shear relaxation looks similar to Fig. 4
(a)—only it does not end in a viscous flow, but rather in a
rubbery plateau [28,29] of the modulus, several decades lower
than the glass modulus G∞. In these cases, the Maxwell time
is much higher than τc, the terminal stage is called segmental
relaxation, and the glass transition occurs when the segmental
relaxation time τc gets so long that the energy and density
fluctuations remain frozen on an experimental timescale.

Something similar happens in the monoalcohols [25],
where the structural hydrogen bond connections survive the
terminal stage, leading to a terminal dielectric relaxation time
much longer than τc (see also the treatment of hydrogen-
bonded glass formers in terms of the shear misfit model [22]).

C. Density fluctuations

In DC704, it is possible to show that Eq. (17) for the
ratio of the compressibility jumps �κad and �κiso at the glass
transition is corroborated independently by other data. The
difference between isothermal and adiabatic compressibility

in the liquid is

κad = cV

cp
κiso, (19)

with the difference between cp and cV calculable from the
thermodynamic relation

cp − cV = α2
l BlV T, (20)

where αl is the thermal volume expansion coefficient, and Bl

is the bulk modulus of the liquid. In DC704, one knows [30]
cp = 1.65 × 106 J/m3 K, αl = 4.6 × 10−4 K−1, and Bl =
3.54 GPa at Tg = 214 K, so κad = 0.909κiso. The total isother-
mal �κ at the glass transition is 0.082 GPa−1, so the measured
adiabatic �κ = 0.065 is a factor 0.789 smaller, almost exactly
the diminution factor 3B/(3B + 4G∞) of Eq. (17) in Sec. II C.

D. Conclusions

The shear misfit model—describing the terminal stage of
the highly viscous flow in terms of irreversible Eshelby or
shear transformation zone relaxations, and the initial stage
in terms of a Kohlrausch tail of reversible Eshelby shear
relaxations—has been reformulated in a critical survey, also
for the case of an additional secondary relaxation peak.
The existence of a small Debye peak in dielectric data has
been derived, together with a relation between adiabatic and
isothermal compressibility changes at the glass transition.

The model is applied to literature measurements of shear,
dielectric, bulk, and aging relaxation in two vacuum pump oils
and squalane, a short chain polymer with a strong secondary
relaxation peak. The aging measurement shows the terminal
stage of the highly viscous flow with unprecedented preci-
sion. The shear misfit model is able to reproduce this precise
measurement with the lifetime extrapolated from the fit of
the shear relaxation data. The findings demonstrate not only
the validity of the irreversible Eshelby relaxation approach,
but also that of its Kohlrausch extension to reversible Eshelby
processes, both essential elements of a future exact theory of
highly viscous liquids.
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