001028694 001__ 1028694
001028694 005__ 20240715202026.0
001028694 037__ $$aFZJ-2024-04751
001028694 1001_ $$0P:(DE-Juel1)187095$$aQdemat, Asmaa$$b0$$ufzj
001028694 1112_ $$a22nd International Conference on Magnetism$$cBologna$$d2024-06-30 - 2024-07-05$$gICM 2024$$wItalien
001028694 245__ $$aCurvature-modulated structural and magnetic properties of thin filmsdeposited onto highly ordered nanosphere arrays
001028694 260__ $$c2024
001028694 3367_ $$033$$2EndNote$$aConference Paper
001028694 3367_ $$2DataCite$$aOther
001028694 3367_ $$2BibTeX$$aINPROCEEDINGS
001028694 3367_ $$2DRIVER$$aconferenceObject
001028694 3367_ $$2ORCID$$aLECTURE_SPEECH
001028694 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1721034527_11492$$xInvited
001028694 520__ $$aThe magnetic interaction among magnetic nanostructures has garnered significant attention, leading to extensive research on magneticnanocaps. This exciting research trend has motivated us to explore the potential of these structures. We successfully fabricated andcharacterized isolated and interconnected magnetic nanocaps by depositing magnetic thin films on highly ordered arrays of nanospheres. Theuse of curved surfaces as substrates causes lateral variations in film thickness, resulting in varying deposited material properties. Multilayers ofCo/Pd with varying Co thicknesses were deposited using Molecular Beam Epitaxy (MBE) on a flat silicon (Si) substrate and on densely packedtwo-dimensional arrays of silica nanospheres with diameters of 50 nm and 200 nm, formed using an improved drop-casting method [1]. Themagnetic and structural properties of the nanostructures obtained were compared to those of films deposited simultaneously on a bare Sisubstrate (reference film). Both the studied film and the reference film were grown polycrystalline, while their roughness, as observed from X-rayreflectivity, differed significantly. X-ray reflectivity revealed that the reference films displayed well-defined Kiessig oscillations, indicating lowroughness in the deposited films. In contrast, the films on nanospheres conformed to the curvature of the underlying nanospheres and exhibiteda systematic periodic variation, resulting in the absence of Kiessig oscillations. Magnetic measurements using SQUID confirmed the formationof magnetic nanocaps as they exhibited distinct magnetic properties, including a different anisotropy axis direction and a drastically highcoercivity with increasing film thickness, compared to the flat films prepared on a bare Si substrate. Furthermore, Grazing Incidence Small AngleX-ray Scattering (GISAXS) confirms the formation of a well-aligned, uniform nanosphere distribution. Additionally, the depth-resolved profile ofthe magnetization was studied using Polarized Neutron Reflectivity (PNR). The overall results, the magnetic and structural properties of the thinfilms were correlated as a function of film thickness and nanosphere radius.SEM and GISAXS of (left) densely packed two-dimensional arrays of monodisperse spherical silica particles and (right) self-assembled particle arrays after magnetic film depositionReferences[1] A. Qdemat, et.al., RSC Adv., 10 (2020) 18339-18347
001028694 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001028694 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001028694 7001_ $$0P:(DE-Juel1)130754$$aKentzinger, Emmanuel$$b1$$ufzj
001028694 7001_ $$0P:(DE-Juel1)130577$$aBuitenhuis, Johan$$b2$$ufzj
001028694 7001_ $$0P:(DE-Juel1)142052$$aPütter, Sabine$$b3$$ufzj
001028694 7001_ $$0P:(DE-Juel1)169789$$aHussein, Mai$$b4$$ufzj
001028694 7001_ $$0P:(DE-Juel1)184662$$aBednarski-Meinke, Connie$$b5$$ufzj
001028694 7001_ $$0P:(DE-Juel1)200587$$aSeidel, Nadine$$b6$$ufzj
001028694 7001_ $$0P:(DE-Juel1)145895$$aPetracic, Oleg$$b7$$ufzj
001028694 7001_ $$0P:(DE-Juel1)130928$$aRücker, Ulrich$$b8$$ufzj
001028694 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b9$$ufzj
001028694 909CO $$ooai:juser.fz-juelich.de:1028694$$pVDB
001028694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187095$$aForschungszentrum Jülich$$b0$$kFZJ
001028694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130754$$aForschungszentrum Jülich$$b1$$kFZJ
001028694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130577$$aForschungszentrum Jülich$$b2$$kFZJ
001028694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142052$$aForschungszentrum Jülich$$b3$$kFZJ
001028694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169789$$aForschungszentrum Jülich$$b4$$kFZJ
001028694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184662$$aForschungszentrum Jülich$$b5$$kFZJ
001028694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200587$$aForschungszentrum Jülich$$b6$$kFZJ
001028694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145895$$aForschungszentrum Jülich$$b7$$kFZJ
001028694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130928$$aForschungszentrum Jülich$$b8$$kFZJ
001028694 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b9$$kFZJ
001028694 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001028694 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001028694 9141_ $$y2024
001028694 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001028694 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001028694 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x2
001028694 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
001028694 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x4
001028694 980__ $$aconf
001028694 980__ $$aVDB
001028694 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001028694 980__ $$aI:(DE-82)080009_20140620
001028694 980__ $$aI:(DE-Juel1)IBI-4-20200312
001028694 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001028694 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709
001028694 980__ $$aUNRESTRICTED