001     1028694
005     20240715202026.0
037 _ _ |a FZJ-2024-04751
100 1 _ |a Qdemat, Asmaa
|0 P:(DE-Juel1)187095
|b 0
|u fzj
111 2 _ |a 22nd International Conference on Magnetism
|g ICM 2024
|c Bologna
|d 2024-06-30 - 2024-07-05
|w Italien
245 _ _ |a Curvature-modulated structural and magnetic properties of thin filmsdeposited onto highly ordered nanosphere arrays
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1721034527_11492
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a The magnetic interaction among magnetic nanostructures has garnered significant attention, leading to extensive research on magneticnanocaps. This exciting research trend has motivated us to explore the potential of these structures. We successfully fabricated andcharacterized isolated and interconnected magnetic nanocaps by depositing magnetic thin films on highly ordered arrays of nanospheres. Theuse of curved surfaces as substrates causes lateral variations in film thickness, resulting in varying deposited material properties. Multilayers ofCo/Pd with varying Co thicknesses were deposited using Molecular Beam Epitaxy (MBE) on a flat silicon (Si) substrate and on densely packedtwo-dimensional arrays of silica nanospheres with diameters of 50 nm and 200 nm, formed using an improved drop-casting method [1]. Themagnetic and structural properties of the nanostructures obtained were compared to those of films deposited simultaneously on a bare Sisubstrate (reference film). Both the studied film and the reference film were grown polycrystalline, while their roughness, as observed from X-rayreflectivity, differed significantly. X-ray reflectivity revealed that the reference films displayed well-defined Kiessig oscillations, indicating lowroughness in the deposited films. In contrast, the films on nanospheres conformed to the curvature of the underlying nanospheres and exhibiteda systematic periodic variation, resulting in the absence of Kiessig oscillations. Magnetic measurements using SQUID confirmed the formationof magnetic nanocaps as they exhibited distinct magnetic properties, including a different anisotropy axis direction and a drastically highcoercivity with increasing film thickness, compared to the flat films prepared on a bare Si substrate. Furthermore, Grazing Incidence Small AngleX-ray Scattering (GISAXS) confirms the formation of a well-aligned, uniform nanosphere distribution. Additionally, the depth-resolved profile ofthe magnetization was studied using Polarized Neutron Reflectivity (PNR). The overall results, the magnetic and structural properties of the thinfilms were correlated as a function of film thickness and nanosphere radius.SEM and GISAXS of (left) densely packed two-dimensional arrays of monodisperse spherical silica particles and (right) self-assembled particle arrays after magnetic film depositionReferences[1] A. Qdemat, et.al., RSC Adv., 10 (2020) 18339-18347
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
700 1 _ |a Kentzinger, Emmanuel
|0 P:(DE-Juel1)130754
|b 1
|u fzj
700 1 _ |a Buitenhuis, Johan
|0 P:(DE-Juel1)130577
|b 2
|u fzj
700 1 _ |a Pütter, Sabine
|0 P:(DE-Juel1)142052
|b 3
|u fzj
700 1 _ |a Hussein, Mai
|0 P:(DE-Juel1)169789
|b 4
|u fzj
700 1 _ |a Bednarski-Meinke, Connie
|0 P:(DE-Juel1)184662
|b 5
|u fzj
700 1 _ |a Seidel, Nadine
|0 P:(DE-Juel1)200587
|b 6
|u fzj
700 1 _ |a Petracic, Oleg
|0 P:(DE-Juel1)145895
|b 7
|u fzj
700 1 _ |a Rücker, Ulrich
|0 P:(DE-Juel1)130928
|b 8
|u fzj
700 1 _ |a Brückel, Thomas
|0 P:(DE-Juel1)130572
|b 9
|u fzj
909 C O |o oai:juser.fz-juelich.de:1028694
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187095
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130754
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130577
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)142052
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169789
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)184662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)200587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145895
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130572
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2024
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 3
920 1 _ |0 I:(DE-Juel1)JCNS-HBS-20180709
|k JCNS-HBS
|l High Brilliance Source
|x 4
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-Juel1)JCNS-HBS-20180709
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21