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Abstract Resonances are uniquely characterized by their
complex pole locations and the corresponding residues. In
practice, however, resonances are typically identified exper-
imentally as structures in invariant mass distributions, with
branching fractions of resonances determined as ratios of
count rates. To make contact between these quantities it is
necessary to connect line shapes and resonance parameters.
In this work we propose such a connection and illustrate the
formalism with detailed studies of the ρ(770) and f0(500)

resonances. Based on the line shapes inferred from the res-
onance parameters along these lines, expressions for partial
widths and branching ratios are derived and compared to
other approaches in the literature.

1 Introduction

Most hadronic states are not stable in quantum chromo-
dynamics (QCD) and possess a decay width too large to
be approximated by a pole on the real axis. Instead, such
resonances are described mathematically by poles in the
complex-energy plane, and their characterization therefore
requires an analytic continuation of the scattering matrix.
In this way, the coupling of a resonance to a given decay
channel is determined by the residue, that is, the strength of
the scattering amplitude at the resonance pole. In practice,
however, this analytic continuation can be highly non-trivial,
and the projection onto the real axis, where experiments are
performed, can differ widely depending on the complexity
of the system. This ranges from clear-cut cases such as the
ρ(770), in which the resonance peak is clearly visible in the
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cross section, via examples such as the f0(500), in which
case only a broad bump is observed, to complicated multi-
channel systems such as the f0(980), which may show up as
a narrow peak or a dip structure. In the last example, the line
shape can differ so dramatically depending on the source that
drives its production, since this is what controls the interfer-
ence pattern of the given resonance with its background. It is
therefore not at all straightforward to experimentally define
branching ratios for a resonance. Even in cases in which the
resonance pole parameters can be determined reliably via
dispersive analyses of the scattering matrix, the concept of
branching ratios needs to be understood theoretically in terms
of pole parameters. The main goal of this work is to establish
such a connection.

The framework we propose here is based on the two-
potential formalism [1], constructed in such a way that con-
straints from analyticity and unitarity are maintained, while
allowing for enough freedom to parameterize the effects of
left-hand cuts (LHCs). To argue that such an approach consti-
tutes, in fact, a minimal solution to the general problem, we
proceed as follows. After defining the formalism in Sect. 2
for S-waves and discussing its generalization to higher partial
waves in Sect. 3, with some details on conventions relegated
to Appendices A and B, we start in Sect. 4 with the applica-
tion to the ρ(770), a resonance structure so clear that even
the Breit–Wigner ansatz [2] gives a reasonable description.
As a first step to improve beyond such a model, self-energy
corrections need to be included to restore the correct analyt-
icity properties, which leads to a form closely resembling the
Gounaris–Sakurai parameterization of the ρ(770) [3]. How-
ever, we will show that with this procedure only real and
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imaginary parts of the pole location,

√
sR = MR − i

ΓR

2
, (1.1)

by convention expressed in terms of the pole mass MR and
pole width ΓR, can be reproduced exactly, while the residue is
predicted in terms of these parameters. For a high-precision
description of pion–pion (ππ ) scattering [4–8] and the result-
ing ρ(770) pole parameters obtained from analytic contin-
uation of the Roy equations [9], this does not provide suffi-
cient flexibility. Reproducing the ρ(770) parameters at the
precision level is not only important to illustrate how our
formalism works, but also of phenomenological interest, as
a starting point to describe 4π inelasticities in the electro-
magnetic form factor of the pion [10,11], which is critical
for a better understanding of tensions in the 2π contribution
to hadronic vacuum polarization [8,12,13].

Next in complexity we turn to the f0(500) in Sect. 5.
While the existence of this lowest-lying resonance in QCD
was contested for decades [14], the required analytic contin-
uation deep into the complex plane can again be performed
in a reliable manner based on dispersion relations [15–17],
despite the fact that the f0(500) is not visible in the ππ S-
wave phase shift as a clear resonance structure (the same is
true for scalar form factors, see, e.g., Refs. [18–21]). More-
over, in this case the presence of an Adler zero [22,23] is crit-
ical to obtain a realistic line shape. For instance, it is known
from the inverse-amplitude method [24,25] that unitarizing
amplitudes from chiral perturbation theory (ChPT) with the
right Adler zero, the f0(500) parameters are reproduced with
reasonable accuracy. Here, we will show the opposite direc-
tion, finding that starting from the f0(500) resonance param-
eters, our formalism automatically produces an Adler zero in
the vicinity of its ChPT expectation. We also detail how the
correct threshold behavior of the LHCs can be incorporated,
see Appendix C, and evaluate higher-order chiral corrections
to the Adler zero, see Appendix D.

Having demonstrated how our formalism recovers the
ρ(770) and f0(500) as resonances in ππ scattering, we turn
to the generalization to multi-channel systems in Sect. 6. In
such a case, if a resonance couples to various channels, the
imaginary part of the pole position acquires contributions
from all of them. Depending on the Riemann sheet on which
the most significant pole is located, the individual imagi-
nary parts not necessarily add, and some care is required
in defining consistent branching fractions and decay widths,
see, e.g., Refs. [26–28] for recent works in this direction.
While usually the problem is phrased as the determination of
pole parameters from the analytic continuation of scattering
amplitudes [29], we take here the opposite perspective and
discuss to what extent line shapes, and from those branch-
ing ratios of resonances, can be deduced from a set of pole

parameters. The main goal is to replace common prescrip-
tions to turn residues into branching fractions by a better
justified recipe. For example, a narrow-width formula for
the f0(500) → γ γ decay [17,30–32] fails to account for
the complicated line shape of the f0(500), while the branch-
ing ratio for f0(500) → K̄ K [33] would even vanish, since
the resonance mass lies below the K̄ K threshold. Instead,
we will show how our formalism allows us to derive well-
defined, normalized spectral functions, from which partial
widths and branching ratios can be inferred in a consistent
manner. As test cases, we again consider ρ(770) and f0(500),
comparing our prescription to other proposals in the litera-
ture. Our formalism can be generalized to more complicated
cases such as the f0(980) [16,17,34] or a0(980) [35,36],
for which different Riemann sheets play a role. In Sect. 7
we summarize our main results and give an outlook towards
such future applications.

2 S-wave formalism

2.1 Scattering amplitude and residues

All information on a scattering process is encoded in the
scattering amplitude M, connected to the S-matrix via

out〈p′
1 p

′
2, b|S − 1|p1 p2, a〉in

= i(2π)4δ4(p1 + p2 − p′
1 − p′

2)Mba , (2.1)

where, for concreteness, we concentrate on a two-to-two
reaction. Close to the resonance pole it can be expanded into
a Laurent series as

Mba = − Rba

s − sR
+ regular terms , (2.2)

where a and b are channel indices. The residue Rba can be
conveniently extracted from the amplitude via

Rba = − 1

2π i

∮
dsMba , (2.3)

where the closed integration path needs to be chosen such that
it runs counterclockwise and the pole of interest is the only
non-analyticity enclosed. The factorization of the residue
(Rba)

2 = Raa×Rbb allows one to introduce pole couplings
according to

g̃a = H(sp)Rba/
√
Rbb . (2.4)

The function H(sp) is introduced here to collect convention-
dependent factors often introduced for the effective cou-
plings, e.g., for higher partial waves H(sp) traditionally
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absorbs the centrifugal barrier factor. The conventions rele-
vant for the effective couplings employed in this work are
provided in Appendix A. It should be stressed that these
pole couplings are the only model- and reaction-independent
quantities that allow one to quantify the transition strength
of a given resonance to some channel a.

2.2 Dyson series and self energy

As a starting point, we consider the case of a resonance cou-
pling to a single continuum channel in an S-wave. Higher
partial waves are discussed in Sect. 3 and the generalization
to more channels is provided in Sect. 6, where also partial
widths and branching ratios are introduced. Theoretically, the
physical propagator of a single resonance, G(s), emerges as
the solution of the Dyson equation for some given self-energy
function Σ(s)1:

G(s) = G0(s) − G0(s)g
2Σ(s)G(s) , (2.5)

with the bare propagator

G0(s) = (s − m2)−1 . (2.6)

Equation (2.5) is solved by

G(s) = (
s − m2 + g2Σ(s)

)−1
. (2.7)

Unitarity requires both g andm to be real parameters. The self
energy Σ(s) contains all one-particle irreducible diagrams
with respect to the studied resonance that contribute to the
two-point function in the resonance channel.

In the simplest scenario in which there is no background
term and the complete interaction of the scattering particles
is provided by the resonance one has

disc Σ(s) = 2iρ(s) , (2.8)

where

ρ(s) = 1

16π

2q√
s

, q = 1

2

√
s − 4M2 , (2.9)

M is the mass of the particles in the continuum channel,
and q denotes the momentum of the outgoing particles in the
center-of-mass frame. In this work we mostly study channels
with particles of equal mass, however, the generalization to
different masses is straightforward. In case of absence of
a background term, such that the discontinuity is provided
by Eq. (2.8), the self energy Σ(s) equals the polarization

1 We define the self energy without the coupling, as this allows us
to keep track of the parameters appearing in the formalism that are
independent of the dynamics.

function Π(s), which can be written as a once-subtracted
dispersion integral

Π(s) = b+ s − s0

π

∫ ∞

sthr

ds′

s′ − s0

ρ(s′)
s′ − s

= b+Πr (s) , (2.10)

with some subtraction constant b that can be absorbed into
other parameters of the amplitude. The scattering threshold
4M2 is denoted as sthr, and s0 is the subtraction point. The
index r indicates that Πr (s) is the renormalized self energy.
Since from now on all self energies are renormalized, we
drop the index r again to ease notation. For s0 = 4M2 one
finds

Π(s) = ρ(s)

π
log

(
16πρ(s) − 1

16πρ(s) + 1

)
(2.11)

for all values of s on the first sheet. Under these conditions
the scattering amplitude reads

M(s) = − g2

s − m2 + g2Π(s)
. (2.12)

To obtain the correct resonance pole location of M, one
therefore has to demand

Im sR = −g2Im
(
Π(−)(sR)

)
,

Re sR = m2 − g2Re
(
Π(−)(sR)

)
, (2.13)

where the superindex (−) indicates that the pole location
of a resonance is on the unphysical sheet that is defined by
Im q < 0. However, by imposing the conditions of Eq. (2.13)
the scattering amplitude of Eq. (2.12) is fixed completely. In
particular we then find for the effective coupling (setting for
simplicity H(sp) from Eq. (2.4) to 1 for the S-wave case
discussed here)

g̃2 = Zg2 , Z =
(

1 + g2 dΠ(−)(s)

ds

∣∣∣∣
s=sR

)−1

. (2.14)

In some cases this already allows for a fair representation of
the pole parameters; in fact, the P-wave version of Eq. (2.12)
closely resembles the venerable Gounaris–Sakurai parame-
terization for the ρ(770) [3]. However, Eq. (2.12) does not
have sufficient flexibility to fix pole location and residue
independently, which becomes problematic for a precision
description of the ρ(770), and, as we will demonstrate below,
it fails badly for the scalar–isoscalar ππ S-wave.

2.3 Two-potential formalism

The goal of this work is to find a more general expression for
the resonance propagator that is consistent with the funda-
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mental field theoretic principles of unitarity, analyticity, and
positivity of the spectral function of the full propagator. To
reach this goal we employ the two-potential formalism [1].
It allows one to decompose the full scattering amplitude as

M(s) = MB(s) + MR(s) , (2.15)

where MB(s) denotes some properly chosen background
amplitude. For example, in Refs. [10,37] MB(s) was chosen
in such a way that the full scattering amplitude at low energies
reproduced the high-precision ππ phase shifts from Refs. [4–
6], and similarly for πK scattering in Ref. [38]. In this way
it is possible to import pertinent information on the LHCs
into the resonance formalism. On the other hand, it does not
allow for a straightforward evaluation of the amplitude at the
resonance pole, since a continuation to the second sheet calls
for an analytic continuation of the input scattering amplitude
MB, which is not known in this case, cf. Eq. (2.19) below.
Therefore, we here employ some explicit representation of
the background term that allows us to perform the mentioned
analytic continuation.

Since the full scattering amplitude respects the unitarity
relation and so doesMB, this does not hold forMR by itself.
In particular one finds

MR(s) = − g2γ 2(s)

s − m2 + g2Σ(s)

≡ −γ (s)g GR(s) gγ (s) (2.16)

for the resonance part of the scattering amplitude, with the
self energy Σ(s) now dressed by the vertex function γ (s) to
be constructed below, and

AR(s) = −γ (s)g GR(s) α (2.17)

for the production amplitude (up to a multiplicative polyno-
mial) that originates from the resonance, with α quantifying
the resonance–source coupling. Equation (2.16) defines the
physical resonance propagator GR(s). On the physical axis
the vertex function γ (s) and the dressed self energy Σ(s) are
now linked to the background amplitude via

disc γ (s) = 2iρ(s)MB(s)∗γ (s) ,

disc Σ(s) = 2iρ(s) |γ (s)|2 . (2.18)

In this way the particle pairs propagating from the vertex
or within the loop are not moving freely (as they do in
Eq. (2.10)), but undergo interactions driven byMB(s). Equa-
tion (2.18) at the same time provides a prescription for the
analytic continuation of both vertex function and self energy
into the unphysical sheet of the complex s plane, via

γ (−)(s) = γ (s)
(

1 − 2iρ(s)M(−)
B (s)

)
,

Σ(−)(s) = Σ(s) − 2iρ(s)γ (−)(s)γ (s) , (2.19)

where we need to use ρ(s∗) = −ρ(s)∗ for the analytic con-
tinuation of the phase-space factor from the upper to the lower
half of the complex s plane [14].

2.4 Explicit parameterizations

To allow for an analytic continuation of MB needed in
Eq. (2.19), we employ an explicit parameterization:

MB(s) = f0
f (s) − f0Π(s)

≡ 1

ρ(s)
sin δB(s)eiδB(s) , (2.20)

where the background phase δB in the expression on the far
right is defined for real values of s above the scattering thresh-
old only. For MB ≡ 0 (achieved by f0 → 0) we recover the
simple scattering amplitude provided in Eq. (2.12). In the
general case, however, the parameter f0 and the function
f (s) allow us to vary both strength and phase of the residue
independently of the pole location. Moreover, we can even
effectively include LHCs into MB by employing a polyno-
mial in a properly chosen conformal variable ω(s) [39–41]:

f (s) = 1 +
kmax∑
k=1

fkω
k(s) + fRs . (2.21)

The parameter fR is introduced to ensure that lims→∞
MB(s) = 0, such that MB and with it also MR drop
as 1/s for large values of s. It is not employed in the fit
to the residues but is kept fixed at some sufficiently small
value to keep its effect small in the resonance region. For
example, in the study of the ρ(770) and f0(500) presented
below, we use fR = 1/(2 GeV)2, including the variation to
fR = 1/(3 GeV)2 in the final uncertainty estimates. It should
be stressed that there is no guarantee that the given parame-
terization for f (s) does not lead to unphysical poles, so that
checking for their absence is to be part of the analysis. For
ω(s) we use the prescription [41]

ω(s) =
√
s − sL − √

sE − sL√
s − sL + √

sE − sL
, (2.22)

where sL denotes the location of the closest branch point of
the LHC—for ππ scattering one has sL = 0—and sE some
conveniently chosen expansion point; we use sE = Re sR. In
the case of ππ scattering the leading LHC arises from two-
pion exchange in the t- and u-channel, whose partial wave
projection for both ππ S- and P-waves leads to an onset
of the LHC scaling as (−s)3/2 near s = 0; see Appendix
C. To implement this property, instead of using the parame-
ter ω directly in Eq. (2.21) we expand in 2ω(s) + [ω(s)]2.
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Given this parameterization, the analytic continuation ofMB

to the unphysical sheet simply goes by replacing Π(s) by
Π(−)(s) in Eq. (2.20), where the latter is given by the analog
of Eq. (2.19) in the absence of a background term, γ (s) → 1.

While MB is allowed to have LHCs, this is not the case
for MR, defined in Eq. (2.16), and the production amplitude
AR(s), defined in Eq. (2.17). This property is guaranteed
by constructing the vertex function γ (s) from the dispersion
integral

γ (s) = exp

(
s

π

∫ ∞

sthr

ds′

s′
δB(s′)
s′ − s

)
, (2.23)

which is the usual once-subtracted Omnès function [42]. The
corresponding subtraction constant is absorbed into the cou-
pling g. It is consistent with the discontinuity Eq. (2.18) and
has only the right-hand cut. At the same time the informa-
tion on the LHC is imported into MR(s) as well as AR(s)
via δB(s). Analogously, we employ

Σ(s) = s − s0

π

∫ ∞

sthr

ds′

s′ − s0

ρ(s′)|γ (s′)|2
s′ − s

(2.24)

as a straightforward generalization of Eq. (2.10) in the pres-
ence of a background interaction. In the applications below
we choose s0 = 0. With these definitions, the scattering
amplitude M, defined in Eq. (2.15), satisfies the unitarity
relation. It is important to note that from the dressed propa-
gator, defined in Eq. (2.16), one can infer a spectral function
in the standard way via

σR(s) = − 1

π
ImGR(s) , (2.25)

which is automatically normalized

∫ ∞

sthr

ds σR(s) = 1 . (2.26)

This normalization condition is violated when the
s-dependence of the real part of Σ(s) that comes from the
dispersion integral of Eq. (2.24) is abandoned.

3 Generalization to higher partial waves

To extend the parameterization outlined above to partial
waves with � > 0, centrifugal barrier factors that grow as
q� = (s/4 − M2)�/2 for small s need to be included. How-
ever, as is demonstrated, e.g., in Ref. [43], to be consistent
with the positivity requirements of field theory, the physical
propagator of a state is not allowed to drop faster than 1/s
for large values of s. Accordingly, Eq. (2.16) tells us that the
self energy Σ(s) is not allowed to grow faster than s for all

values of �. Thus, the energy dependence of the centrifugal
barrier factors needs to be tamed. Following Ref. [44] we
introduce the functions

ξ�(s) =
√

(s − 4M2) �

2� + 1
B�

(
s − 4M2

sB − 4M2

)
, (3.1)

with the leading B�(x) given by

B0 = 1 , B1(x) = √
1/(1 + x) . (3.2)

Explicit forms for barrier factors with values of � up to 4
are given, e.g., in Ref. [45]. Here sB denotes some prop-
erly chosen scale with sB > 4M2. The final results should
not depend strongly on this parameter; for definiteness we
choose sB = 1/ fR = Λ2, Λ = 2 GeV, in the analyses below.
This is the scale that gives the best results for the naive res-
onance model without a background interaction, see row (i)
of Table 1, but we again include the variation to Λ = 3 GeV
in the final uncertainty estimates. These regulator functions
introduce unphysical singularities for space-like values of
s. However, since they are far away for the given choice of
parameters and pushed to the unphysical sheet by construc-
tion in both the vertex functions and the self energies, they
have no significant effect on the resonance parameters and
line shapes.

In this work we restrict ourselves to systems of two spin-
less particles such that the total angular momentum is cap-
tured in �. Then we can adapt the expressions from above to
the case � 
= 0 by employing

Σ�(s) = s − s0

π

∫ ∞

sthr

ds′

s′ − s0

ρ(s′)ξ�(s′)2|γ�(s′)|2
s′ − s

. (3.3)

The expression for Π�(s) follows from the one above by
putting γ�(s) to 1 and choosing s0 = 4M2. The vertex func-
tions γ�(s) are still evaluated from Eq. (2.23); however, they
need to be constructed from the phase of the adapted MB,
which now reads

MB = ξ�(s)2 f0
f (s) − f0Π�(s)

. (3.4)

For the resonance amplitude and the production amplitude
we find

MR(s) = −g2γ�(s)
2ξ�(s)

2 GR(s)

= − g2γ�(s)2ξ�(s)2

s − m2 + g2Σ�(s)
,

AR(s) = −gγ�(s)ξ�(s)GR(s) α . (3.5)

With this definition for the resonance propagator GR(s), the
spectral function introduced in Eq. (2.25) remains normal-
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Table 1 Parameters determined in the different analyses for the ρ(770)

as well as the resulting values for the residues. Note that the pole location
is reproduced exactly by construction; cf. Eq. (4.5). The uncertainties
of the bare parameters reflect the impact of the uncertainties in the input
parameters, for sB = 1/ fR = Λ2, Λ = 2 GeV (upper) and Λ = 3 GeV

(lower). For phase and modulus of the couplings, the first uncertainty
refers to the impact of the uncertainties of the input parameters, the
second one to the variation for Λ ∈ [2, 3] GeV (in scenarios (i i i) and
(iv), g̃ρππ is reproduced exactly, by construction). Values marked with
an asterisk are kept fixed in the fit

g m [GeV] f0 [GeV−2] f1 |g̃ρππ | arg(g̃ρππ ) [◦] |g̃ρ K̄ K | arg(g̃ρ K̄ K ) [◦]

(i) 6.61(2) 0.84(5) 0∗ 0∗ 5.95(6)(1) −5.9(1.0)(0.7)

6.66(1) 0.86(1) 0∗ 0∗

(i i) 6.5(1) 0.85(0) 5(5) × 10−6 0∗ 5.98(5)(1) −5.3(9)(1)

6.4(1) 0.87(1) 10(5) × 10−6 0∗

(i i i) 5.7(3) 0.85(2) 2.9(1.0) × 10−5 −1.6(4) 6.01(3) −5.3(1.0)

5.8(6) 0.91(6) 3.0(1.6) × 10−5 −1.0(4)

(iv) 5.9(5) 0.84(4) 2.6(1.1) × 10−5 −1.6(5) 6.01(4) −5.3(9) 3.3(3)(4) −8.0(8)(8)

6.1(1.3) 0.94(15) 3.3(1.6) × 10−5 −1.1(4)

ized according to Eq. (2.26) for all values of �. In con-
trast, using the expression for GR(s) provided in Ref. [3],
the resulting spectral function is not normalized due to the
missing barrier factors B�(s), leading to a resonance prop-
agator that drops as 1/(s log(s)) for large values of s. One
key advantage of our formalism is that the resulting spec-
tral function is automatically normalized, which is not the
case when improving Breit–Wigner-type parameterizations
of the imaginary part of a resonance propagator via a disper-
sion integral [46–49]. In this sense, we obtain a more direct
implementation of the corresponding Källén–Lehmann spec-
tral representation [50,51] for a given resonance.

4 Application to the ρ(770)

Before generalizing the formalism to coupled channels, we
illustrate its application to the ρ(770) and f0(500) reso-
nances, respectively. Pole parameters with very high accu-
racy are available, e.g., from Refs. [16,52]:

Mρ = 762.5(1.7) MeV ,

Γρ = 2 × 73.2(1.1) MeV ,

g̃ρππ = 6.01(8) exp
{
−i

π

180
5.3(1.0)

}
. (4.1)

The vector form factor is defined via the current matrix
element

〈π+(p1)π
−(p2)| j (I=1)

μ |0〉 = (p1 − p2)μF
V
π (s) , (4.2)

where j (I=1)
μ = (ūγμu − d̄γμd)/2 and s = (p1 + p2)

2. In
the formalism introduced above it takes the form

FV
π (s) = B1

(
s − 4M2

π

sB − 4M2
π

) −αgγ1(s)

s − m2 + g2Σ1(s)
, (4.3)

with the barrier factor B1(x) defined in Eq. (3.2). This allows
us to determine α in Eq. (2.17) via the coupling of the ρ(770)

to the photon

g̃ργ = 5.01(7) exp
{
−i

π

180
1(1)

}
(4.4)

as provided in Ref. [52]. We emphasize that Eq. (4.3) does not
yet define a suitable parameterization for precision studies of
the pion vector form factor, for the following reasons: first,
FV

π (s) is not normalized exactly to FV
π (0) = 1, since we

only included the pole position and residues of the ρ(770)

as constraints, and this minimal parameterization violates
the normalization by about 5%. Second, the barrier factor
B1 ensures a normalized spectral function, but introduces an
unphysical LHC starting at s = −(sB −8M2

π ). Accordingly,
the dispersion relation for Re FV

π (s) in the physical region
around the ρ(770) is violated by (2–3)%, a reasonably small
effect given the scale sB � 4 GeV2. Third, FV

π (s) behaves
asymptotically as 1/s3/2, in contradiction to the expected
1/s scaling [54–58]. These shortcomings can be remedied by
extending Eq. (4.3) appropriately, using the freedom in the
choice of barrier factors and taking into account polynomial
terms in the unitarity relation for FV

π (s). Such generalizations
will be studied in future work, while here we show the results
for the minimal form (4.3).

To demonstrate the effect of the background amplitude
on the properties and line shape of the ρ(770) we applied
three variants thereof: (i) MB ≡ 0, (i i) kmax = 0, and (i i i)
kmax = 1, where the parameter kmax, introduced in Eq. (2.21),
counts the number of terms in the expansion in the conformal
variable.

Since the parameters of the background amplitude MB

enter the expression for the resonance amplitude through an
integral that can only be performed numerically, it is not
possible to calculate the residue and its phase directly from
the model parameters. We therefore fit its parameters to the
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Fig. 1 The left (right) figure shows the absolute value (phase) of the ππ scattering amplitude, in both cases for the various analyses presented
here: (i), (i i), (i i i), and (iv) are shown as the blue, orange, green, and red line or band, respectively. In both figures we also show for comparison
the results from Ref. [6]

Fig. 2 The pion vector form factor compared to data derived from τ− → π−π0ν̄τ [53] on a linear scale (left) and on a logarithmic scale (right).
Legend as in Fig. 1

residue, while at all times demanding

Im sR = −g2Im
(
Σ

(−)
� (sR)

)
,

Re sR = m2 − g2Re
(
Σ

(−)
� (sR)

)
, (4.5)

where in case of the ρ(770) discussed in this section we
have � = 1. In this way the correct pole location is guaran-
teed. The results of the three different analyses are shown
in Table 1. The uncertainties quoted in the table were deter-
mined via a bootstrap method, where both residue and pole
location were varied within their allowed uncertainties in the
course of the analysis—always demanding that there be no
additional singularities appearing in the amplitude. It is the
latter condition that leads to a slightly smaller uncertainty
in the deduced residues than in the input residue. This lim-
itation could be overcome by allowing for more parameters
in the conformal expansion, to extend the region that can
be scanned in the bootstrap procedure, but we restrict the
analysis to the minimal case in which all parameters can be
determined directly from the residues.

The results show that in case of the ρ(770) already the
model without any background gives a reasonable prescrip-

tion of the residue. This should not come as a surprise, given
that the resulting amplitudes are very close to the Gounaris–
Sakurai parameterization [3], with the only difference that we
employ the barrier function B�, which, however, has a minor
impact in the resonance region. As soon as we allow for a
background amplitude, both the absolute value and phase of
the residue can be exactly reproduced. The resulting ππ P-
wave scattering amplitude and the pion vector form factor
are shown in Figs. 1 and 2, respectively.

Two features of our analysis are worth noting. First, the
energy dependence of both the scattering amplitude and the
form factor are reproduced with rather high accuracy in all
analyses, just using the correct ρ pole parameters as well as
the correct analytic structure of the amplitudes. Second, as
becomes evident in the right panel of Fig. 2, in the analy-
sis (i i i), which reproduces the central values of the ρ pole
parameters exactly, the background amplitude introduces
some resonance-like structure right in the mass range of the
ρ′, which might indicate that the deviation of the ρ pole
parameters from the most naive implementation of the reso-
nance physics realized in analysis (i) is driven by the excited
vector states.
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Table 2 Parameters determined in the different analyses for the f0(500)

as well as the resulting values for the residues. Note that the pole location
is reproduced exactly by construction; cf. Eq. (4.5). The uncertainties of
the bare parameters reflect the impact of the uncertainties in the input
parameters, for fR = 1/Λ2, Λ = 2 GeV (upper) and Λ = 3 GeV

(lower). For phase and modulus of the couplings, the first uncertainty
refers to the input parameters, the second one (where applicable) to the
variation for Λ ∈ [2, 3] GeV. Values marked with an asterisk are kept
fixed in the fit

g m f0 f1 gσ K̄ K |g̃σππ | arg(g̃σππ ) [◦] |g̃σ K̄ K | arg(g̃σ K̄ K ) [◦]
[GeV] [GeV] [GeV] [GeV] [GeV]

(i) 3.0(1) 0.14(3) 0∗ 0∗ 0∗ 3.12(18) 10(5)

(i i) 5.3(5) 0.89(6) −25.5(1.1) 0∗ 0∗ 3.33(17)(8) −73.1(2.4)(0.5)

7.5(2.2) 1.15(15) −27.5(1.3) 0∗ 0∗

(i i i) 4.7(3) 0.82(3) −24.8(6) 0.06(2) 0∗ 3.61(11) −74.0(2.2)

5.3(4) 0.82(5) −24.8(6) 0.06(2) 0∗

(iv) 4.8(2) 0.80(3) −24.9(4) 0.06(2) 2.3(2) 3.61(12) −74.0(2.3) 2.0(1) −23(1)(1)

5.4(6) 0.85(8) −26.2(7) 0.07(3) 2.4(2)

Fig. 3 Comparison of the phase shifts (left) and the absolute value of
the scattering amplitude (right) that result for the scalar–isoscalar ππ

channel, once the pole parameters are fixed via the different variants
of the model: (i), (i i), (i i i), and (iv) are shown as the blue, orange,
green, and red line or band, respectively. The black dashed line shows

the phase shift and the related absolute value of the scattering ampli-
tude (between ππ and K̄ K threshold) from Ref. [4] for comparison.
The dots show the phase shifts extracted from Ke4 decays [59]. The first
and second perpendicular lines show the locations of the Adler zero and
the ππ threshold, respectively

5 Application to the f0(500)

For the scalar–isoscalar channel, we use the pole param-
eters [16,52]

Mσ = 458(14) MeV ,

Γσ = 2 × 261(10) MeV ,

g̃σππ = 3.61(13) exp
{
−i

π

180
74(3)

}
GeV . (5.1)

The scalar form factor is defined via the current matrix ele-
ment

〈ππ | jS|0〉 = M2
π F

S
π (s) , (5.2)

with the scalar current jS = m̂(ūu + d̄d). In the formalism
outlined above it takes the form

FS
π (s) = −αgγ (s)

s − m2 + g2Σ(s)
. (5.3)

This allows us to determine α in Eq. (5.3) via the coupling
of the f0(500) to a scalar source

g̃σ S = 151(5) exp
{
−i

π

180
25(2)

}
MeV (5.4)

as given in Ref. [52], see Appendix A.
As in the case of the ρ(770), we perform three different

analyses, with different levels of sophistication for the back-
ground amplitude. As before, in all cases the pole locations
are reproduced exactly by employing the S-wave version of
Eq. (4.5). The results are reported in Table 2. As one can see,
in the absence of a background the residue of the f0(500) is
not well described; in particular, the phase of the residue is
off completely. Also the resulting phase shifts and amplitudes
have little in common with our empirical knowledge of the
scalar–isoscalar ππ amplitude, cf. the blue curves in Figs. 3
and 4. In this case the resonance amplitude acquires an addi-
tional pole right below threshold on the first sheet, in contra-
diction to the physical ππ scattering amplitude. These obser-
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vations reflect the fact that the features of the f0(500) cannot
be captured by a Breit–Wigner function, even if an energy-
dependent width is included. The situation improves drasti-
cally when we allow for the simplest background amplitude,
and especially as soon as the LHC is included in the param-
eterization the residue is reproduced exactly, in line with our
modern understanding of the physics of the f0(500) reso-
nance [14,60]. With a non-vanishing background included in
the analysis, fit (i i), phase and absolute value of the residue
are improved significantly. At the same time the unphysical
pole disappears and is replaced by a zero in the amplitude
right below threshold, see the orange lines in Figs. 3 and 4.
When we include the f1-term, the phase and absolute value
of the residue are reproduced exactly. Also for this parame-
terization we find a zero in the amplitude in the same energy
range. This is illustrated by the green curves in Figs. 3 and 4.

The features described above demonstrate the intimate
relation between the properties of the f0(500) and a non-
trivial energy dependence of the ππ scattering amplitude
in the threshold region. In fact, since pions are the Gold-
stone bosons of the spontaneously broken chiral symme-
try of QCD, there is necessarily a zero just below thresh-
old in the S-wave isoscalar ππ scattering amplitude, the
Adler zero [22,23], which at leading order (LO) in ChPT
is located at sA = M2

π/2; as we show in Appendix D, this
prediction is remarkably stable towards high-order correc-
tions, with the one- and two-loop contributions reducing the
LO value by 12% and 3%, respectively. Since we derive the
amplitudes from the pole parameters only, it should not come
as a surprise that the threshold physics driven by the chiral
properties of QCD is not exactly reproduced, however, it is
a remarkable observation that reproducing the pole proper-
ties of the f0(500) with an amplitude consistent with unitar-
ity and analyticity seems to be possible only with ampli-
tudes that feature a zero in the scattering amplitude just
below threshold, which finds a natural explanation in the
approximate chiral symmetry of QCD. The zeros found in
the amplitudes are s(i i)

A = 0.09 M2
π , s(i i i)

A = 2.1(4) M2
π , and

s(iv)
A = 2.1(1.1) M2

π . While it has been known for a long
time that unitarizing an amplitude that is in line with chiral
constraints leads to a pole of the S-matrix in close proximity
to that of the f0(500) [24,25], what we have demonstrated
here for the first time is the opposite direction.

Finally, the black dashed lines in the two panels of Figs. 3
and 4 show the correct phase shifts, absolute value of the
scattering amplitude, and production amplitude, respectively.
They are based on the high-precision phase shifts of Ref. [4].
The plots clearly illustrate that as soon as we include the
background interaction, the qualitative features of the ππ

amplitude are reproduced reasonably well.

Fig. 4 Two-pion production amplitude that results for the different fits.
The color code agrees with that of Fig. 3, only that now the dashed line
is the non-strange scalar pion form factor of Ref. [21], derived from the
phase shifts of Ref. [4]

6 Generalization to coupled channels and branching
fractions

6.1 Coupled channels

For a meaningful discussion of branching fractions we need
to extend the formalism introduced above to multiple chan-
nels, whose number shall be denoted by nc. Since the goal of
this study is to deduce line shapes from resonance properties
and the residues factorize, it appears justified to introduce
the background amplitude in diagonal form; however, the
generalization to a non-diagonal background is straightfor-
ward [37]. Thus we write

MB(s)ad = δad
ξ2
a (s) f0 a

fa(s) − f0 aΠa(s)
, (6.1)

where a, d ∈ {1, . . . , nc}, Πa(s) denotes the non-interacting
renormalized self energy of channel a, and ξa(s) is the cor-
responding, channel-specific centrifugal barrier factor. In the
multi-channel case the channel label not only specifies the
particle content of the given channel, but also the angular
momentum. Then the expression for the physical propagator
reads

GR(s) =
(
s − m2 +

nc∑
a=1

g2
aΣa(s)

)−1

, (6.2)

and we obtain

MR(s)ad = −ξa(s)γa(s)ga GR(s) gdγd(s)ξd(s) ,

AR(s)a = −gaγa(s)ξa(s)GR(s) α , (6.3)

where γa(s) is the vertex function that emerges from the
background amplitudeMB(s)aa according to Eqs. (2.20) and
(2.23). If we allowed for off-diagonal terms inMB(s)ad , also
the self energies would acquire off-diagonal terms [37].
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For nc coupled channels one is faced with 2nc Riemann
sheets. The resonance propagator GR(s) on some arbitrary
sheet can be written as

G
(sh1,...,shnc )
R (s) =

(
s − m2 +

nc∑
a=1

g2
aΣ

(sha)
a (s)

)−1

, (6.4)

where the index sha ∈ {+,−} specifies on which sheet with
respect to channel a the self-energy function needs to be
evaluated. In the single-channel analysis, the real and imag-
inary parts of the pole location allowed us to determine m
and g2 for any given background; see Eq. (4.5). The situa-
tion is a little more complicated now, since various channels
and the corresponding couplings appear in the denomina-
tor of the resonance propagator GR(s) defined in Eq. (6.2).
In practice, the procedure to fix the proper pole location(s)
depends on what information is available for the resonance
under study. For example, if pole locations on various sheets
are known, one may straightforwardly generalize Eq. (4.5)
to fix ga as well as m. If, however, only one pole is known,
then Eq. (4.5) only determines one of the ga couplings and
the others may be employed to fix the pertinent residues. In
the examples discussed in this paper, the two-pion channels
are by far dominating, and we therefore use Eq. (4.5) as given
to fix m and gππ . The additional inclusion of the couplings
to relatively unimportant inelastic channels, like γ γ for the
f0(500), only changes the pole location within uncertainties.
Therefore, we will use for those the approximation

g2
a = |g̃a|2/|Z | (6.5)

to find the corresponding couplings. For more strongly cou-
pled channels, such as the K̄ K channel in the scalar–isoscalar
ππ system, we implement the bare coupling as an additional
free parameter in the fit to reproduce the residues.

6.2 Branching fractions

In this subsection we compare different possible definitions
for branching fractions and propose a new one based on the
formalism discussed in the previous sections.

In Eq. (1.1) the total width of a resonance was fixed from
the pole location sR as ΓR = −Im sR/MR. Matching that to
Eq. (6.4) reveals a natural definition of partial widths, namely

Γ
R(p)
a = −g2

aIm (Σ(sha)
a (sR))/MR , (6.6)

where the index (sha) is fixed by the sheet on which the pole
at sR is located. Clearly such a definition is sensible only if
it is just a single pole that dominates the physics, however,
this holds true both for the f0(500) and the ρ(770). In the
absence of background interactions for a single channel, this

definition agrees with the one of Ref. [61]. For the evaluation
of the branching ratio from the pole location, one then obtains

Br(p)
a = Γ

R(p)
a /ΓR . (6.7)

However, it was shown in Ref. [26] using the example of
f0(980) and a0(980) (and further discussed for the former
resonance in Ref. [28]) that this definition runs into problems
when the most relevant pole sits on a sheet other than the one
adjoined to the physical sheet above all thresholds. Taking the
f0(980) as an example, where the pole typically sits above
the K̄ K threshold, but on the physical sheet with respect to
the K̄ K channel, the problem is that the different contribu-
tions to the imaginary part of the pole location in Eq. (6.2)
no longer add up, since Im (Σ

(+)

f0(980)K̄ K
(s f0(980))) > 0 but

Im (Σ
(−)
f0(980)ππ (s f0(980))) < 0. The authors argue that in this

case ΓR is not a proper measure of the total width. Adapting
their insights to our parameterization, we define a modified
expression from the one given by the pole location:

Γ
R(p,m)
a = g2

a

∣∣∣Im (Σ(sha)
a (sR))/MR

∣∣∣ ,

Γ R
tot =

∑
a

Γ
R(p,m)
a ,

Br(p,m)
a = Γ

R(p,m)
a /Γ R

tot . (6.8)

It should be stressed that the mentioned sign problem high-
lighted for the example of the f0(980) is considerably more
general: it occurs as soon as channels are included in the
analysis that are closed at the resonance location, as is the
case for the decay of both f0(500) and ρ(770) to two kaons.
Thus, we also include Br(p,m)

a in our study.
In some cases, such as the two-photon coupling of the

f0(500), a narrow-width formula has been used in the liter-
ature to turn the residue into a decay rate [17,30–32]. Thus,
in this prescription one has

Γ R(nw)
a = |g̃a|2

MR
ρa(M

2
R)ξ2

a (M2
R) , (6.9)

where the superscript (nw) refers to the narrow-width limit.
To see how well this prescription works in practice, we define

Br(nw)
a = Γ R(nw)

a /ΓR . (6.10)

Contrary to the branching ratios defined in Eq. (6.7), those
of Eq. (6.10) not necessarily add to 1. Only for narrow states
above threshold, where M2

R − 4M2
a 
 MRΓR holds, one

finds

g2
aIm (Σ(−)

a (sR)) ≈ −|g̃a |2ρa(M2
R)ξ2

a (M2
R) , (6.11)
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and Eq. (6.9) is recovered naturally. However, for M2
R −

4M2
a < 0 the phase-space factor ρa(M2

R) vanishes and thus
for that case the narrow-width formula does not provide a
meaningful answer.

The definition we propose to use for the evaluation of
branching fractions is a lot closer to what is measured in
experiment for a single, isolated resonance. What is done
there can be summarized as [28]

Brexp
a = Na/Ntot , Ntot =

nc∑
a=1

Na , (6.12)

where Na is the number of events measured for the decay of
the resonance R into channel a in some production reaction
(assuming that the resonance leaves a sufficient imprint in the
channel). The specifics of the production reaction cancel in
the ratio and thus Brexp

a measures a resonance property. Given
that the count rates in a channel a from some resonance R
are calculable from GR, evaluated on the physical sheet such
that sha = + for all a (the superindex introduced in Eq. (6.4)
is dropped here to ease notation), we can write

Br(cr)
a =

∫ ∞

sathr

ds

π
|GR(s)gaγa(s)ξa(s)|2 ρa(s) , (6.13)

where the label (cr) shows the relation to the count rates.
Since the formalism described above automatically generates
a spectral function that is normalized, the sum over the Br(cr)

a

is one. Moreover, all the self energies need to be evaluated on
the physical, the (+), sheet and accordingly no sign problem
can appear, regardless of where the pole is located.

The construction Eq. (6.13) encodes the properties of a
single resonance. As long as pole locations and residues
are known with sufficient accuracy for each individual state,
it should also be applicable for partial waves with various
overlapping resonances, although in this case the method
sketched in Eq. (6.12) can no longer be applied to experimen-
tal data straightforwardly. Concrete tests hereof, including
the sensitivity to the parameterization of background ampli-
tude and barrier factors as studied here for the ρ(770) and
f0(500), are left for future work.

As a final definition, we compare our results to Eq. (28)
in combination with Eq. (19) of Ref. [28]:

Br(B)
a =

∫ ∞

sathr

ds

π

f |g̃a|2ρa(s)ξa(s)2

∣∣s − m̂2 + i f
∑

b |g̃b|2ρb(s)ξb(s)2
∣∣2 ,

(6.14)

where as before the g̃a denote the effective couplings derived
from the residues. However, as discussed in Sect. 2, with-
out additional background contributions it is not possible
to simultaneously obtain both the correct pole location and

residue. Because of this, the authors of Ref. [28] introduced
a fudge factor, f , adjusted along with m̂2 in such a way that
the pole location is correct. Thus, Eq. (6.14) is close to what
one would obtain in our formalism for a vanishing back-
ground, only that the dispersive pieces of the self energies
are dropped. As discussed above, Eq. (6.14) does in general
not lead to the correct residues, however, for the ρ(770), this
is not necessarily a big effect. Moreover, Eq. (6.14) relates to
a spectral function that is not normalized, resulting in branch-
ing fractions that do not sum to 1. Thus, to allow for a better
comparison, we also introduce a normalized branching ratio
based on Eq. (6.14), namely

Br(B,n)
a = 1

N
Br(B)

a , N =
nc∑
a=1

Br(B)
a . (6.15)

6.3 Results for the ρ(770) and f0(500)

Using the examples of the ρ(770) and f0(500), we now
compare the results of the various prescriptions to calculate
branching fractions, including the dominant ππ decay as in
Sects. 4 and 5, but including as well the γ γ and K̄ K channels
for the f0(500) [32,33]

g̃ f0(500)γ γ = 6.3(7) exp
{
−i

π

180
115

}
MeV ,

g̃ f0(500)K̄ K = 2.1(4) exp
{
−i

π

180
57.9

}
GeV , (6.16)

and the πγ and K̄ K ones for the ρ(770). The former has the
residue [62]

g̃ρπγ = √
8παem 0.79(8) GeV−1 , (6.17)

where αem is the fine-structure constant, with a phase con-
sistent with zero. Compared to the coupling of the pions to
the ρ(770), the dimension is different due to an additional
momentum dependence in the vertex; see Appendix B for
details.

The residue for the coupling of the ρ(770) to K̄ K is esti-
mated using an SU(3) symmetric vector-meson-dominance
Lagrangian [63,64] and by comparing the vector–isovector
ππ and K̄ K form factors (cf. also Ref. [65]). With that we
can approximate the bare coupling of the ρ to the kaons as
g2
ρ K̄ K

= g2
ρππ/2 to obtain a prediction for the value of the

residue.
The branching ratios calculated for these systems with the

different methods are shown in Table 3. As expected from
Eq. (6.11), for those cases in which the inelastic threshold
is well below the resonance mass, as is the case for the γ γ

decay of the f0(500) and the πγ decay of the ρ(770), the
narrow-width formula, Br(nw)

a , gives results (almost) consis-
tent with the ones derived from the pole location, Br(p)

a . How-
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Table 3 Comparison of the branching ratios calculated using the dif-
ferent prescriptions introduced in Sect. 6.2. The dagger indicates that
for those branching fractions the uncertainties could not be evaluated,

for the reasons detailed in the main text. Whenever two uncertainties are
provided, the first one refers to that in the input quantities, the second
one to the variation for Λ ∈ [2, 3] GeV; see Tables 1 and 2

Resonance Channel (a) Narrow width Pole location Ref. [28] This work

Br(nw)
a Br(p)

a Br(p,m)
a Br(B)

a Br(B,n)
a Br(cr)

a

f0(500) ππ 0.8(1) 1.03(1)(0) 0.97(0)(0) 0.52(8) 0.94(5) 0.970(5)(12)

γ γ × 106 3.0(7) 5.0(1.6)(0.3) 4.8(1.5)(0.3) 1.9(6) 3.5(9) 1.4(4)(3)

K̄ K 0 −0.03(1)(0) 0.03(1)(0) 0.03(2) 0.06(4) 0.030(5)(12)

sum 0.8 1.0 1.0 0.74 1.0 1.0

ρ(770) ππ 1.007(14) 1.04(1)(4) 0.96(1)(3) 1.222(5) 0.967(3) 0.95(4)(3)

πγ × 104 5.1(1.1) 3(1)(6) 3(1)(3) 5.4† 4.3† 12(1)(4)

K̄ K 0 −0.05(1)(3) 0.04(1)(3) 0.0419(5) 0.0331(3) 0.05(4)(3)

sum 1.0 1 1 1.26 1 1

ever, some deviations are observed in comparison to Br(cr)
a ,

which reflects the impact of the line shape on the branching
fractions—note that sγ γ

thr = 0 and sπγ
thr = M2

π , so that the
line shape is probed over a large range when the integral in
Eq. (6.13) is evaluated.

The effective prescription from Ref. [28], Br(B)
a , suf-

fers from the wrong normalization of Eq. (6.14). Therefore,
already theππ branching ratio deviates significantly from the
other cases. If one corrects for this, the agreement with Br(cr)

a

improves, as shown in column Br(B,n)
a . However, employing

Br(B,n)
a to calculate the two-photon width of the f0(500) gives

a result that is two standard deviations larger than the refer-
ence value provided in the column marked as Br(cr)

a . This
large discrepancy follows from the increased sensitivity to
the line shape of the f0(500) at small values of s, which in
this parameterization becomes similar to the blue solid line
in Fig. 4.

We were not able to determine the uncertainties for the
πγ branching fraction of the ρ(770) for Br(B)

a and Br(B,n)
a .

The reason is that the integrand in Eq. (6.14) develops a
pole below the two-pion threshold, since the analytic con-
tinuation of the K̄ K momentum becomes sizable here and
contributes negatively. The same problem does not occur for
Eq. (6.13), since here the analytic continuation of the momen-
tum is tamed by the dispersion integral. Furthermore, in the
case of sB = (3 GeV)2, we observe that the imaginary part
of the πγ self energy on the second sheet at the ρ(770) pole
location changes sign compared to the central solution at
Λ = 2 GeV. Such zeros on the second sheet also occur for
other channels, but the πγ case is the only one for which
we find a strong sensitivity of its position to the regulator
scale. In contrast, the behavior on the real axis appears to
be more stable, suggesting that indeed Br(cr)

a defines a better
prescription for a branching fraction than Br(p)

a .
When the threshold for the inelastic channel lies above

the resonance location, as for the K̄ K decay of the f0(500)

and ρ(770), the various expressions naturally give very dif-
ferent results, and Br(nw)

a even becomes zero. However, also
the prescription via the pole location that appears improved
at first glance, Br(p)

a , gives a negative value for both reso-
nances, and thus does not produce a meaningful branching
fraction in this case either. All other prescriptions give con-
sistent results within uncertainties. The uncertainty of the
branching fraction Br(cr)

ρ→K̄ K
is significantly larger than all

others; this reflects the fact that the ρ(770) line shape is badly
determined for energies beyond 1 GeV, where it is probed for
this channel.

7 Summary and outlook

In this paper we introduced a formalism consistent with the
fundamental principles of analyticity, unitarity, and positivity
of the spectral function that allows one to derive line shapes
of a resonance solely from its pole parameters. The resulting
spectral function is automatically normalized, allowing for an
unambiguous definition of branching ratios via proper inte-
grals over the given line shape. As test cases, we discussed the
ρ(770) and f0(500) resonances, whose pole parameters are
known to high precision from dispersive analyses of ππ scat-
tering. In particular, their study allowed us to assess which
degrees of freedom are required to capture all relevant fea-
tures of the respective resonance.

For the ρ(770) we found that a simple Dyson resum-
mation of the self energy, essentially corresponding to a
Gounaris–Sakurai parameterization, gives reasonable agree-
ment with phenomenology, but is not sufficient to match the
available precision, mainly because the residue is already
determined by the pole position. Accordingly, we improved
on the construction by including a background term in the
two-potential formalism, which provides the required free-
dom to adjust the residue as well. We observed that the corre-
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sponding corrections seem to be concentrated in the energy
range in which the excited ρ′ and ρ′′ resonances appear, and
could thus be interpreted as a hint where 4π effects become
relevant [10,11]. A possible future application concerns the
2π contribution to hadronic vacuum polarization [8,12,13],
given that the tensions among different data sets, most promi-
nently BaBar [66], KLOE [67], and CMD-3 [68], indeed
appear to point to the study of inelastic effects as an impor-
tant means to better understand the discrepancies [69].

For the f0(500), we found that, as expected, it is criti-
cal to account for the LHCs, which we implemented includ-
ing the correct threshold behavior ∝ (−s)3/2. Moreover, we
found that demanding the precise resonance pole position and
residue automatically implies a subthreshold zero in the ππ

scattering amplitude, which can be naturally identified with
the Adler zero. In fact, while it is well known that unitarizing
ChPT amplitudes with the Adler zero generates a pole close
to the f0(500) found from Roy equations, our study shows
that also the opposite is true. As a by-product, we evaluated
the chiral corrections to the position of the Adler zero, finding
a 15% reduction compared to its LO value.

Finally, the new way to evaluate spectral functions also
allowed us to introduce a new expression to calculate branch-
ing fractions via integrals over resonance line shapes that by
construction contain information on the correct pole location
and residues. We compared our prescription to alternatives
proposed in the literature. In some cases significant differ-
ences were observed and the origin of those was identified,
e.g., related to (lack of) normalization of the spectral function
and sensitivity to the line shape far away from the resonance.
While the cases we studied are still dominated by the ππ

channel, a major advantage of our proposed formalism is
that it applies to situations in which different channels can
compete, leading to a more complicated analytic structure.
This includes the f0(980), with its strong interplay of ππ

and K̄ K S-waves, as well as the a0(980), in which case πη

and K̄ K have comparable branching fractions. We leave the
study of such systems to future work.
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Appendix A: Conventions

An integral part of the work presented in this paper concerns
the adjustment of parameters to reproduce the correct reso-
nance parameters. Especially the residues are often subject
to different conventions and definitions. Here, we collect the
various conventions for amplitudes and form factors.

The isoscalar–scalar amplitude on the second sheet close
to the pole can be written in the form

t0
0 (s)II = g2Zγ II(sp)2

sp − s
= 1

16π

g̃2
σππ

sp − s
, (A.1)

with the renormalization factor Z . The form factor can be
written in a similar form,

FS
π (s)II = gZαγ II(sp)

sp − s
= g̃σππ

√
Zα

sp − s
. (A.2)

We can use this form to write an effective matching condi-
tion between the coupling of a scalar source to the f0(500)

and our source coupling α. Note that the change from the
particle to the isospin basis causes an additional factor in our
description, leading to

〈0| jS| f0(500)〉 = 〈0| jS|I = 0〉 = M2
π g̃σ S

= M2
π

√
3

2

Res F II
S

g̃σππ

= M2
π

√
3

2
α
√
Z . (A.3)

The isovector–vector amplitude on the second sheet close to
the pole can be written as

t1
1 (s)II = ξ2(sp)

g2Zγ II(sp)2

sp − s
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= (sp − 4M2
π )

3

[
B1

(
sp − 4M2

π

sB − 4M2
π

) ]2 g2Zγ II(sp)2

sp − s

= (sp − 4M2
π )

48π

g̃2
ρππ

sp − s
. (A.4)

It should be noted that in this case the function H(s) as
defined in Eq. (2.2) absorbs only the squared momentum and
the normalization, but not the taming factor. Accordingly, the
vector form factor can be written as

FV
π (s)II = B1

(
sp − 4M2

π

sB − 4M2
π

)
gZαγ II(sp)

sp − s

= α
√
Z g̃ρππ

sp − s
, (A.5)

leading to

g̃ρππ

g̃γρ

sp = α
√
Z g̃ρππ . (A.6)

Appendix B: Electromagnetic channels and couplings

In this work two channels were studied that are different from
the massive pseudoscalar ones,ππ and K̄ K , i.e., the radiative
decays into γ γ and πγ for the f0(500) and ρ(770), respec-
tively. The couplings of these channels are suppressed by
orders of αem and the self-energy contributions have a differ-
ent structure. Here, the definitions of the respective couplings
as well as their self-energy contribution are collected.

The width of the decay f0 → γ γ in the narrow-width
limit is defined as

Γ f0γ γ = e4|ĝ f0γ γ |2
16πM f0

= |g̃ f0γ γ |2
M f0

Im Πγγ (M2
f0) . (B.1)

Therefore, the imaginary part on the real axis of the self-
energy contribution is given as

Im Πγγ (s) = 1

16π
, (B.2)

which can be used in a once-subtracted dispersion integral to
determine explicitly

Πγγ (s) = 1

16π2 log

(−sγ γ

s

)
, (B.3)

where sγ γ > 0 is the subtraction point.
The decay ρ → π0γ needs to be treated more carefully,

since its amplitude reads

Mρπγ = eĝρπγ εμναβεμ
ρ εν

γ p
α
π pβ

γ . (B.4)

The width of the decay in the narrow-width limit is defined
as

Γρπγ = e2|ĝρπγ |2
96πM3

ρ

(M2
ρ − M2

π )3

= |g̃ρπγ |2
Mρ

Im Ππγ (M2
ρ) , (B.5)

and therefore

Im Ππγ (s) = 1

16π

s2

12

(
1 − M2

π

s

)3

(B.6)

is used to define the self-energy contribution at the pole
by calculating the respective dispersion integral, once-
subtracted at s0 = 0. To tame the energy dependence we
use the function [B1(x)]4, with B1(x) as defined in Eq. (3.2).

Appendix C: Two-body left-hand cuts

LHCs in partial-wave amplitudes are due to singularities in
crossed (t-, u-) channels. As they appear as a result of partial-
wave projection, the associated integration over the scattering
angle in general weakens the singularity: crossed-channel
poles, e.g., turn into left-hand cuts. In the context of crossing-
symmetric ππ scattering, the leading LHC is again due to
two-pion intermediate states, which lead to a branch point at
s = 0. We discuss the degree of the corresponding singularity
with the help of the one-loop function (subtracted at s = 0)

J̄ (s) = 2 − 2σ 2Lσ , Lσ = 1

2σ
log

σ + 1

σ − 1
,

σ =
√

1 − 4M2

s
= 16πρ(s) , (C.1)

where we have absorbed an overall factor in the definition
of J̄ for simplicity. Its right-hand cut is of the well-known
square-root type,

Im J̄ (s) = π σ θ
(
s − 4M2) . (C.2)

We now define s-channel partial-wave projections of J̄ (t)
according to

[
P� J̄

]
(s) ≡ 1

2

∫ 1

−1
dzP�(z) J̄

(
t (s, z)

)
,

t (s, z) = 1

2

(
4M2 − s

)
(1 − z) , (C.3)

123



Eur. Phys. J. C (2024) 84 :599 Page 15 of 17 599

which can easily be performed analytically. The imaginary
parts of the first few of these are given by

Im
[
P0 J̄

]
(s) = −π

σ

[
1 − (σ 2 − 1)Lσ

]
θ(−s) , (C.4)

Im
[
P1 J̄

]
(s) = π(1 − σ 2)

2σ 3

[
1 − (σ 2 + 1)Lσ

]
θ(−s) ,

Im
[
P2 J̄

]
(s) = π(1 − σ 2)

4σ 5

[
σ 2 + 3 − (σ 4 + 3)Lσ

]
θ(−s) .

Near s = 0, they have the common expansion

Im
[
P� J̄

]
(s) = (−1)�+1 2π

3σ 3 + O(
σ−5) (C.5)

= (−1)�+1 π

12M3 (−s)3/2 + O(
(−s)5/2) .

This can be understood from the fact that the integration for
the partial-wave projection hits the LHC first for z = −1,
where P�(−1) = (−1)�. We therefore conclude that left-
hand singularities in ππ partial waves are of degree (−s)3/2

(only). This is reflected in the form of our conformal param-
eterization of the background amplitude in Sect. 2.

Appendix D: Isoscalar S-wave Adler zero

In this appendix, we collect the higher-order corrections to
the Adler zero in the ππ isospin-0 S-wave, t0

0 (s). While the
two-loop amplitude has been known since Refs. [70,71], to
the best of our knowledge, even the one-loop corrections to
the LO Adler zero

s(2)
A = M2

π

2
(D.1)

have not been spelled out explicitly in the literature despite
being used in, e.g., the modified inverse amplitude method
[25]. Using t0

0 (s) in the form given in Ref. [72], we find

sA = s(2)
A + s(4)

A + s(6)
A , (D.2)

with

s(4)
A = − M4

π

(48πF)2

[
1163 + 2

(
107l̄1 + 158l̄2 − 90l̄3

)

− 908A − 4224A2
]
,

s(6)
A = − M6

π

(12πF)4

{
5

64

(17948821

336
+ 895π2

)

− 9A
(349339

448
+ 20π2

)

− A2

7

[375125

4
+ 1008π2 − 34776 log

7

2

− 6A
(
19073 + 1296A

)]

+ 4968

7

[
Cl3

(
2
√

7A
) + 2

√
7ACl2

(
2
√

7A
) − ζ(3)

]

+ 1

16

[
3103l̄21 + 7364l̄1l̄2 + 4108l̄22

− 2610l̄1l̄3 − 2340l̄2l̄3 − 1620l̄23
]

+ 1

896

[
l̄1

(
1454303 − 1390328A − 4098432A2)

+ l̄2
(
2410997 − 2315912A − 6820608A2)

− 1440l̄3
(
470 − 557A − 984A2)]

− L

128

(
21653 − 12

(
17l̄1 − 5257l̄2 + 1080l̄3

))

− 195L2 + 9

32
(4π)4r

}
, (D.3)

where

A = arctan
√

7√
7

, L = log
M2

π

μ2 , (D.4)

and the Clausen functions are related to polylogarithms via

Cl3(θ) = Re Li3
(
eiθ

)
, Cl2(θ) = Im Li2

(
eiθ

)
. (D.5)

The l̄i are given in the conventions of Ref. [73], Mπ is the
physical pion mass, and F the pion decay constant in the
chiral limit. The two-loop low-energy constants are collected
in

r = 3
[
240(rr1 + rr2) + 428rr3 + 836rr4 + 1047rr5 + 483rr6

]

� −6F2
π (3840 f 2

χ + 896
√

2 fχgV + 147g2
V )

M2
V

� −0.11 , (D.6)

where we used the resonance-saturation estimate from
Ref. [71] at μ = 0.77 GeV, with the phenomenological input
from Ref. [74]. We neglect uncertainties for the estimate
Eq. (D.6), since the impact of r on s(6)

A already proves minor,
especially in comparison to the dominant uncertainty due to
l̄1 in s(4)

A . Based on the β functions provided in Ref. [75], we
also checked that the scale dependence of r indeed cancels
the one from the L and L2 terms in Eq. (D.3). Numerically,
we obtain

s(4)
A

s(2)
A

= −0.12(3) ,
s(6)
A

s(2)
A

= −0.03(1) , (D.7)

so that in combination sA reduces by 15(4)% compared to
its tree-level value. For the low-energy constants, we used
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the input l̄1 = −0.4(6), l̄2 = 4.3(1) [5], l̄3 = 3.4(3), and
Fπ/F = 1.07(1) [76–82].
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