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Accurate assessment on temporal and spatial changes in soil organic carbon stocks (SOCS) is essential for
evaluating the potential of soil carbon sequestration and formulating effective strategies to mitigate climate
change. While most SOCS studies have focused on topsoil, there remains a lack of comprehensive understanding
regarding the vertical distribution of SOCS within soil profiles. Furthermore, the key environmental variables
influencing deep SOCS are still not fully comprehended. In this study, we employed an integrated approach
combining equal-area spline function, boosted regression trees model (BRT), and the space-for-time substitution
method to accurately model the three-dimensional distribution of SOCS in response to climate warming in Inner
Mongolia, China. A total of 12 environmental variables (generated from climate, topography, biological, and soil
property factor) and 208 soil profile data were selected to construct the model. The 10-fold cross-validation
technique was employed to assess the predictive performance of the BRT model for soil organic carbon stocks
(SOCS) at various depths, using four accuracy validation indicators: root mean square error (RMSE), mean ab-
solute error (MAE), coefficient of determination (R?), and Lin’s concordance correlation coefficient (LCCC). The
results demonstrated the BRT model accurately predicted SOCS with higher LCCC and R? values, as well as lower
RMSE and MAE values. The predicted map revealed higher SOCS concentration in the northeast and lower
concentration in the western area. Grassland and forest land were found to store a majority of SOCS, with over
46 % located the topsoil depth of 30 cm. Furthermore, under different climate warming scenarios with tem-
perature increase of 1.5 °C, 2 °C and 4 °C, there was a corresponding decreased in SOCS by 7 %, 9 % and 17 %
respectively at a soil depth. Additionally, this study identified MAT and NDVI as primary environmental vari-
ables influencing the spatial distribution of three-dimensional scale SOCS. We believed that accurately predicting
and mapping three-dimensional SOCS under different climate warming scenarios will contribute to the devel-
opment of scientifically sound land management policies aimed at enhancing soil carbon sequestration in the
region.

1. Introduction

Soil constitutes the largest terrestrial carbon reservoir (1576 Pg), and
even minor fluctuations in soil carbon can lead to significant alterations
in atmospheric CO; levels (Siegenthaler and Wenk, 1984; Lal, 2004) as
well as global warming (Eswaran et al., 1993). As the primary constit-
uent of land-based carbon reservoir, soil organic carbon (SOC) plays an
important crucial role in regulating carbon cycle (Lal et al., 2004; Chen

et al., 2022). Understanding the response and adaptation of SOC to
climate change is essential for predicting future climate change impacts
(Berrang-Ford et al., 2011). Despite extensive research, several unre-
solved issues remain regarding the impact of warming on soil organic
carbon stocks (SOCS) and its underlying mechanisms (Smith et al.,
2008). Most studies focus on the topsoil SOCS while lacking sufficient
understanding of SOC sensitive areas, depth intervals and key factors
influencing changes in the deep SOCS (Lal et al., 2018; Chen et al.,
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2022). Therefore, it is crucial to develop a reliable and efficient method
for accurately predicting and mapping the spatial distribution of SOCS at
three-dimensional scales amidst climate warming.

To effectively map soil attributes at different depths based on genetic
soil horizons, it is recommended to standardize soil data to a uniform
depth and utilize predictive models, particularly for datasets with
inconsistent soil layer depth (e.g., those collected by Shahbazi et al.,
2019). Currently, two primarily approaches are widely adopted: firstly,
simulating the spatial distribution of SOCS at a depth of either 30 cm or
100 cm in accordance with IPCC guidelines (IPCC, 2006); secondly,
employing the GlobalSoilMap specifications are for spatial predictions
(Arrouays et al., 2014), supported rescue efforts (Arrouays et al., 2017).
These well-established specifications have been successfully applied
across various scales ranging from local regions to entire countries and
even globally. Notable methods for modeling soil depth functions
include statistical depth function (Zuo and Serfling, 2000), polynomial
depth functions, (Jague et al., 2016), exponential depth function (Mis-
hra et al., 2009), and equal-area spline function (ESF) (Bishop et al.,
1999). Due to its high accuracy, smoothness, and stability in predicting
the three-dimensional soil attributes’ depth, ESF is extensively utilized
in this context as highlight (Dharumarajan and Hegde, 2022). In France,
Mulder et al. (2016) effectively modeled and predicted SOCS down to 1
m using the ESF combined with regression tree analysis. Adhikari et al.
(2014) also adhered to the GlobalSoilMap specification while utilizing
ESF along with Kriging method for predicting SOCS at five standard soil
depths in Denmark.

The conventional approach to mapping the spatial distribution of
SOCS involves calculating the mean SOCS value for each land use type or
soil type and extrapolating it to all mapping units, but this method fails
to capture the true spatial variability of SOCS (Khalil et al., 2013; Wang
et al., 2020; Nguemezi et al., 2021). To obtain a representative average
of SOCS levels, a large number of samples are typically required, which
can be costly and time-consuming (Smith, 2004). Digital soil mapping
(DSM) methods offer an effectively solution to address these challenges
by leveraging limited sample data and comprehensive environmental
analysis (Adhikari et al., 2019). DSM is based on the “scorpan” equation
that posits soil formation and distribution as a result of a complex in-
teractions between environmental variables known as soil formation
factors such as climate, terrain, parent material, biology, and time
(Minasny et al., 2013). Moreover, some environmental variables in the
‘scorpan’ equation can be adjusted through space-for-time substitution
(STS) to predict future scenario under different climate or land use
change (Blois et al., 2013). This approach has been widely used in other
research as demonstrated by Adhikari et al. (2014) and Reyes Rojas et al.
(2018).

Various DSM techniques are available for SOC mapping based on
‘scorpan’, including but not limited to support vector machines (Song
et al., 2022), random forests (Grimm et al., 2008), stepwise multiple
linear regression (Olaya-Abril et al., 2017), multivariate regression
(Bhunia et al., 2019), and boosted regression trees (BRT) (Martin et al.,
2011) among others. However, BRT model is widely acknowledged as an
efficient and convenient approach that distinguishes itself from tradi-
tional tree models due to its integration of multiple simple tree models,
enabling flexibly handling of linear, logical, exponential or general
linear problems (Martin et al., 2011; Lamichhane et al., 2019).

In this study, we integrated ESF with the BRT and STS method to
model the three-dimensional distribution of SOCS in response to climate
warming in Inner Mongolia. Inner Mongolia, a long and narrow region
extending from east to west in northern China, is considered an
ecological barrier due to its geographical location and significant
climate differences (Tian et al., 2011). The vegetation in Inner Mongolia
is primarily distributed in the arid and semi-arid agro-pastoral ecotone,
making its fragile ecosystem highly vulnerable to climate change im-
pacts (Bai et al., 2004; Tian et al., 2011). Investigating the effects of
climate warming on three-dimensional SOCS in Inner Mongolia will
facilitate predictions of SOCS stability in this region and provide
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scientific support for comprehending the changing trend of ecosystem
carbon dynamics under global climate change (Zhang et al., 2022a;
Zhang et al., 2022b). Therefore, Inner Mongolia serves as an optimal site
for studying the impact of climate warming on SOCS. Our research ob-
jectives were: 1) developing a depth function model for simulating
vertical distribution of SOCS; 2) identifying key environmental variables
influencing spatial variation of the three-dimensional SOCS; 3) quanti-
fying SOCS response under different land use patterns considering
climate warming; and, 4) accurately depicting spatial distribution of
multiple depths SOCS under various climate warming scenarios.

2. Materials and methods
2.1. Research region

This study was conducted in the Inner Mongolia, located in northern
China (37°-53°N, 97.2°-126°E) (Fig. 1), encompassing an approximately
area of 1.1 x 10* km?. It shares borders with Russia and Mongolia to the
north, spanning across the regions of Northeast China, North China, and
Northwest China. Geographically demarcated by mountains ranges, the
region exhibits a predominantly temperate continental monsoon climate
(Zhang et al., 2022a; Zhang et al., 2022b). Weather patterns within the
study area are characterized by a sudden temperature rise in spring
followed by autumn, a short yet hot summer season, concentrated pre-
cipitation events, long and cold winter often accompanied by early frost
occurrence (Bai et al., 2004). Most regions experience an annual sun-
shine duration exceeding 2700 h; however, the western region of Ala-
shan Plateau receives over 3400 h of sunshine. Inner Mongolia is
recognized as China’s second-largest plateau due to its complex terrain
and average altitude of approximately 1000 masl. Notably diverse
topography exists within Inner Mongolia with plateau accounting for
53.4 %, mountains and hills comprising 37.3 %, plains and mudflat
constituting for 8.5 %, while water bodies the remaining portion.

The soil type in Inner Mongolia exhibits significantly variation from
east to west, resulting in a corresponding shift in the soil belt from
northeast to southwest. In the eastern region is characterized by black
soil, while the western region predominantly consists of dark brown,
chernozem, chestnut, brown, black loessial, calcareous lime, sandy land
and gray-brown desert soils (Bai et al., 2004; Chen et al., 2021). Among
these soil zones, black soil stands out with its superior natural fertility,
favorable structure and moisture condition for cultivation purposes.
Consequently, it is highly suitable for agricultural development. The
chernozem’s inherent fertility makes it an excellent choice for crop
cultivation as well as forestry and animal husbandry activities. Grass-
land covers the largest proportion of land use types at 46 %, followed by
unused land (28 %), forest land (14 %), arable land (10 %), while
construction and wetland each account for only 1 %.

2.2. Soil profile data

The soil dataset was digitized from the book “Soil series of China,
Inner Mongolia Volume” published by National Science and Technology
Basic Resources Survey Program of China (2008FY110600). This
collaborative effort between Shenyang Agricultural University and
Nanjing Institute of Soil Research, Chinese Academy of Sciences resulted
in its officially published in 2020. Fieldwork conducted between 2017
and 2018 collected soil profile information, which was subsequently
analyzed at Shenyang Agricultural University in 2018. We meticulously
digitized all the soil profile data from the aforementioned book to create
an up-to-date soil dataset for Inner Mongolia, China. The dataset in-
cludes comprehensive described of each soil profile along with analyzed
results for soil organic carbon content using the dry combustion method
(Matejovic, 1993) based on a total of 809 soil samples. Additionally bulk
density was determined through oven-dry methods (Erbach, 1987), and
gravel content information is also provided.
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Fig. 1. Location of the study area and sampling point map overlaid on the 90-m digital elevation model.

2.3. Calculation of SOCS

The objective of this study was to investigate the spatial variation of
three-dimensional SOCS under different climate warming scenarios. We
employed the Batjes (1996) formula to calculate SOCS in each special
soil layer throughout the entire profile (Eq. (1):

SOCS =

k k
SOCcomens =Y SOCeoncensaiion X BD: x D; x (1 = ;) M

i=1 i=1

where SOCS represents the SOC density (kg m~2); SOC.ontent, denotes the
SOC content (kg m~2) of each k layer; SOConcentration refers to the SOC
concentration (g kg™1); BD stands for the bulk density (g cm™>); D rep-
resents the thickness of soil layer (m); S indicated the volume fraction of
fragments > 2 mm (%); and i refers to a specific layer within the soil
profile.

2.4. Environmental data

In this study, a total of 12 environmental variables (including soil,
topographic, climatic, and biological variables) were selected to accu-
rately predict the three-dimensional SOCS response to climate warming
in Inner Mongolia. Due to the diverse sources of data on environmental
biological variables, all data layers were reprojected and resampled to
Albers Conical Equal Area projection at a 90 m spatial resolution using
ArcGIS 10.2 (ESRI Inc., USA). Subsequent analysis and modeling of the
data were conducted using R software (R Development Core Team,
2013).

2.4.1. Climatic variables

Climate variables, such as temperature and precipitation, exert a
substantial impact influence on the accumulation and decomposition of
SOC (Gibson et al., 2021). The climatic variables utilized in this study
encompassed mean annual temperature (MAT) and mean annual pre-
cipitation (MAP), obtained from the Geospatial Data Cloud site of the
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Chinese Academy of Sciences (http://www.gscloud.cn). MAT and MAP
were derived from daily observation collected by 2400 meteorological
stations nationwide, which were subsequently interpolated using thin
pate smooth splines with ANUSPLIN software (McKenney et al., 2006).
Initially available at a spatial resolution of 1 km x 1 km, the downloaded
data was resampled to a higher resolution of 90 m x 90 m. Furthermore,
to address the potential impact of climate warming on variation in SOCS,
we incorporated scenarios representing an increase in MAT by 1.5 °C, 2
°C and 4 °C into the MAT layer to derive corresponding variables for
different climate warming scenarios (Lan et al., 2021). The Paris Climate
Agreement establishes a global temperature rise limit of 1.5 °C, as
indicated by King and Karoly (2017). Once this threshold is surpasses, it
will have significantly implications for human daily life and production,
leading to more frequent occurrences of extreme high temperature,
heavy rainfall, drought, and wildfire (Aerenson et al., 2018). If the
global average temperature exceeds a 2 °C increase from pre-industrial
levels, it will exacerbate the adverse impacts of climate change on both
economic growth and environmental quality (King and Karoly, 2017). A
rise to or above 4°C would not only result in the extinction of numerous
endangered species but also the likelihood of wide-range and impact
extreme weather events (Adams et al., 2013). Therefore, this study has
considered these three distinct warming scenarios to model and predict
SOCS in in Inner Mongolia.

2.4.2. Topographic variables

Six topographic variables, namely slope gradient (SG), elevation
(ELE), slope aspect (SA), catchment area (CA), profile curvature (PG),
and topographic wetness index (TWI), were derived from a digital
elevation model (DEM) obtained from the Geospatial Data Cloud site of
the Chinese Academy of Sciences (http://www.gscloud.cn). These
topographic variables are commonly utilized in predicting soil proper-
ties, such as SOCS, by indicating the redistribution of surface materials,
water, and energy fluxes within a given landscape. (Roman-Sanchez
et al., 2018; Blackburn et al., 2022). Overall, ELE influences the for-
mation and distribution of soil properties, enzymes, and microorgan-
isms, thereby affecting SOC levels and leading to feedback on SOCS
change (Tsozué et al., 2019). SG and SA impact SOCS through factors
such as soil thickness, vegetation coverage, organic matter input, and
human disturbance (Wang et al., 2020). PC exerts an influence on flow
velocity and drainage processes that subsequently affect erosion and
deposition dynamics (Blackburn et al., 2022). TWI, and CA compre-
hensively consider the influence of terrain characteristics on potential
soil moisture retention and distribution (Roman-Sanchez et al., 2018).
ELE. SG, SA, and PC were derived from DEM data in ArcGIS 10.2, while
CA and TWI were calculated using SAGA GIS (Conrad et al., 2015).

2.4.3. Biological variables

The Normalized Difference Vegetation Index (NDVI) plays a crucial
role in detecting vegetation growth and coverage, as the prediction of
SOC levels (Adhikari et al., 2019; Shafizadeh-Moghadam et al., 2022).
Jobbagy and Jackson (2000) established a robust correlation between
the distribution pattern of SOC and NDVI. Moreover, due to its capacity
to indicate vegetation productivity and biomass, NDVI is extensively
employed for predicting SOCS. The 2018 NDVI data was acquired from
the Geospatial Data Cloud site of the Chinese Academy of Sciences (htt
ps://www.gscloud.cn) and resampled to a 90-m grid.

2.4.4. Soil variables

The study utilized soil texture data, encompassing percentages of
sand, silt and clay content, as predictors for SOCS. Soil texture exerts a
well-established influence on diverse properties and processes such as
permeability, moisture retention, aggregation and fertility (Dharumar-
ajan and Hegde, 2022). The soil texture data used in this study were
acquired from the Resource and Environmental Science and Data Center
of the Chinese Academy of Sciences (https://www.resdc.cn). This
dataset was generated by integrating a 1:1 million scale soil survey map
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with soil profile data obtained from the second national soil survey,
these data were converted into a raster format with a resolution of 1 km
x 1 km.

2.5. Prediction models

This study used equal-area spline function, boosted regression tree
(BRT), and Space-for-time substitution method to predict SOCS at
different soil depths in response to climate warming. The specific
flowchart of the methodology was shown in Fig. 2.

2.5.1. Equal-area spline function

The Malone et al. (2009) equal-area spline function, which is based
on Bishop et al.’s (1999) quadratic spline function, was employed using
SplineTool Version2 (ASRIS, 2011) to model SOCS profile measure-
ments. This tool enables the modeling of a continuous depth function
based on discrete SOCS measurements obtained from non-overlapping
soil layers or horizons. The modeled values can be aggregated into
specific intervals representing different soil depth. It is assumed that the
measurement from each soil layer i represents the mean value, ac-
counting for any potential measurement error. Mathematically, the
measured can be represented as follows:

yi=fite (2

where y; represents the actual mean value of soil attribute within the

given interval (x;.;, x;); f represents the average measurement value; e;
represents the measurement error and independent; i represents the soil
depth layer. The underlying assumption posits a smooth variation of soil
attribute values with depth. The function f (x) denotes a spline obtained
through minimizing Di:

D, :% 3 0:-7) +A/X:'[ " (x)°)dx ©)

The first term of equation represents the data fitting, while the sec-
ond term quantifies the smoothness of function f (x) through its first
derivative f ’(x). The parameter 1 determines the trade-off between
fitting and roughness, and this study tested five different values for i
(0.0001, 0.001, 0.01, 0.1, and 1) to identify the optimal fit. Among these
values, a 4 = 0.1 yielded the lowest root mean square error.

2.5.2. Boosted regression trees

The BRT model was utilized to simulate the spatial variation of SOCS
and assess the relative importance (RI%) of climate, terrain, biological
and soil variables on SOCS. The BRT model combines regression tree
algorithm and boosting method, offering several advantages such as
adaptability to complex nonlinear relationships, automatic handling of
variable interactions, and improved stability and accuracy (Elith et al.,
2008; Wang et al., 2020). The BRT model requires user to specify four
parameters: learning rate (LR), tree complexity (TC), bag fraction (BF)
and tree number (NT) (Elith et al., 2008). LR represents the influence of
an individual tree on the final model’s performance (Wang et al., 2020).
TC reflects the intricate and multifaceted nature of each decision tree
(Martin et al., 2011). BF index indicates the degree of randomness in the
data set selection levels of randomness (Wang et al., 2022). Determining
NT determination can be achieved by combination LR and TC (Lam-
ichhane et al., 2019).To identify optimal parameters, we tested various
combinations within ranges for LR (0.25-0.0025), TC (8-12), BF
(0.55-0.75) and NT (800-2500). Ultimately, we determined the optimal
values for LR, TC, BF, and NT were respectively found to be 0.025, 12,
0.75, and 1500 with minimal error rates.

2.5.3. Space-for-time substitution method

The formation and development of soils are influenced by a range of
environmental variables. These factors, collectively referred to as
“scorpan” factors of soil formation (McBratney et al., 2003; Adhikari
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et al., 2019), play crucial roles in the process of soil development. The
spatial-temporal effects of these factors can be quantified using a STS
method (Adhikari et al., 2019), where one factor is manipulated while
keeping other factors constant. For instance, to investigate the impact of
temperature on the distribution of SOCS, various temperature scenarios
can be tested and their effects on SOCS can be measured. This approach
has effectively assessed the spatial variation of SOCS across diverse land
use and climate change scenarios in Brazil, Australia, Chile, United
States, and China (Strey et al., 2016; Adhikari et al., 2019; Gomes et al.,
2019; Wang et al., 2022). However, despite its the validity of this
method cannot be tested without verification data for future scenario
and uncertainties may exist (Strey et al., 2016; Gray and Bishop, 2016;
Reyes Rojas et al., 2018). To investigate the response of the SOCS to
future climate warming scenario in Inner Mongolia, this study utilized
the profile data from 2018 along with 12 environmental variables as
predictors. It was assumed that environmental factors such as parent
material or terrain would remain relatively stable over a given period in
the future. The STS method was employed to capture the spatiotemporal
dynamics of SOCS in response to anticipated temperature fluctuations.

2.6. Accuracy evaluation

The predictive performance of BRT model was evaluated using a 10-
fold cross-validation technique, which involved calibrating and testing
of each sample data point. Four validation indices, namely MAE, RMSE,
coefficient of determination (RZ), and Lin’s consistency correlation co-
efficient (LCCC) (Lin, 1989) were utilized to assess the model’s perfor-
mance (Eq. 4-7).

|
M%E:;Zym—h\ 4
_ 1 n 2
RMSE = , |- le (a; — b;) (5)
RZ _ Z?:l(al - éi)z (6)
S (bi = by’
LocC = 2% %)

E+E+(@+b)

where ag; and b;, represent predicted values and measured values; @, and b
is the mean of predicted values and measured values; n represents the
number of sampling points; r denotes the correlation coefficient between
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measured and predicted values; 0, and d; are variances of predicted and
measured values.

3. Results
3.1. Exploratory data analysis

The continuous depth function of SOCS was modeled using an ESF.
Table 1 presents summary statistics for aggregated SOCS at different
depths (0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm and 60-100 cm), along
with the corresponding statistics for predictors for SOCS. In the topsoil
(0-5 cm), the range of SOCS varied from 0.03 to 4.13 kg rn’z, while in
the subsoil (60-100 cm), it ranged from 0.07 to 14.71 kg m~2. The mean
value of SOCS increased gradually with depth, reaching its peak at a
depth of 30-60 cm and exceeding that of the surface layer by more than
threefold. All soil depths exhibited positively skewed distributions in
terms of their SOCS values, with the highest skew value being observed
at a depth of 15-30 cm.

The correlation coefficients between SOCS and environmental vari-
ables revealed significantly positive correlations with SG, MAP, NDVI,
clay, and negative correlations with CA, TWI, and MAT at all soil depth
levels (Table 2). Among these variables, MAT exhibited the stronger
correlation with SOCS, followed by NDVI and MAP. We assessed mul-
ticollinearity among these variables by calculating the variance inflation
factor (VIF) while considering their intercorrelations. The results indi-
cated that there was no issue of multicollinearity in the predicting SOCS
in 2018 as evidenced by each environmental variable’s VIF.

3.2. Model performance

To enhance prediction robustness, the BRT model was executed 100
times and the average values were utilized as the final forecasted
outcome. The BRT model demonstrated satisfactory predictive perfor-
mance across all soil depths; however, a decreasing trend in accuracy
was observed with increasing depth. Optimal performance was observed
at 5-15 cm and 15-30 cm, while suboptimal performance occurred at
greater depths (60-100 cm) (Table 3), as evidenced by higher R? and
LCCC scores and lower MAE and RMSE scores.

3.3. Relative importance of environmental variables

The BRT model was iterated 100 times and the average RI of each
environmental variable was calculated. To ensure comparability across
different depth layers, the RI values were then standardized to scale to
100 %. Across all depth layers, NDVI, MAT and MAP were the primary

Table 1
Descriptive statistics of soil organic carbon stocks (SOCS) at different depths and environmental variables based on 208 sampling points.

Property Unit Min. Max. Mean Skewness Kurtosis
SOCS.5 kg m~2 0.03 4.13 0.90 1.45 3.18
SOCSs.15 kg m~2 0.11 10.1 1.79 1.95 6.48
SOCS15.30 kg m 2 0.15 17.9 2.34 2.86 16.6
SOCS30.60 kg m~2 0.21 14.0 3.35 1.42 2.12
SOCSe0-100 kg m2 0.07 14.7 3.01 1.63 3.22
ELE m 126.7 1945.5 938.7 —0.16 —0.27
SG Degree 0.01 6.80 0.81 2.46 8.86
SA Degree 1.10 357.3 158.1 0.37 -1.20
CA m?m? 7,330,910 2,306,450,000 723,194,273 0.54 —0.76
PC Index —0.02 0.02 0.00 0.40 16.6
TWI Index 8.38 15.02 12.4 -0.13 —0.86
MAP Celsius degree 39.9 606.3 297.9 -0.23 —0.85
MAT mm —2.07 10.7 5.13 —0.19 -1.01
NDVI Index 0.06 0.86 0.48 -0.27 -1.17
Clay Percentage 4.00 33.0 17.3 —0.14 —0.68
Silt Percentage 7.00 49.0 27.0 —0.07 0.59
Sand Percentage 24.0 85.0 55.5 0.05 —0.39

Note: ELE, elevation; SG, slope gradient; SA, slope aspect; CA, catchment area; PC, profile curvature; TWI, topographic wetness index; MAP, mean annual precipi-
tation; MAT, mean annual temperature; NDVI, Normalized Difference Vegetation Index.
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Table 2

Pearson’s correlation coefficient between soil organic carbon stocks (SOCS) and environmental variables based on 208 sampling point data.

SOCSy.5 SOCSs.15 SOCS;5.30 SOCS30.60 SOCSe60-100 ELE SG SA CA PC TWI MAP MAT NDVI Clay Silt

Property

0.95**

SOCSs.15

0.88*

0.75%*
0.67**

0.43**
—0.22%*

SOCS15.30

0.73**

0.67**

SOCS30.60

0.72%*
—0.04

0.45%*
—-0.18*

0.43%*
_0.23%

SOCSe0-100

ELE
SG
SA
CA
PC

0.03

0.11
0.02
—0.29%*

0.19%*
0.08

—0.15*

—0.07

0.18**
0.03
—0.24%*

~0.12

0.21%*
0.06
—0.30%*

—0.14*
—0.39**

0.22%*
0.07
—0.28%*

~0.12

0.24%*
0.06
—0.27**

—0.10

0.03
—0.55%*

0.03
0.06
—0.05

—0.05

0.27%%*
—0.76%*

0.20%*
—0.15*
—0.26%*

—0.04
—0.05

0.77%*
~0.43+

~0.26%*

—0.35**

—0.39**

~0.40%*

TWI
MAP

MAT

—0.63**

0.11
-0.12

0.43%+
—0.38%*

0.40%*
—0.35%*

0.48**
~0.51%*

0.55!(*
—0.59%*

0.50%*

—0.63**

0.57%*
—0.63%*

—0.62%*

0.54%*

~0.39%
~0.33%

0.00
—0.05

0.39%*
—-0.16*
—0.22%*

0.19%*

~0.46%*
~0.14*

—0.60%*
—0.37%+

0.

0.77**

0.14*
—0.05
—-0.03

0.30%*

0.53** 0.43%* 0.37+*

0.60**

0.62%*

NDVI
Clay

Silt

0.47%*
0.01
~0.24%*

0.41%**
—0.04
—0.18*

0.09

0.23**
—0.01
-0.11

0.16*
—0.09
—0.02

0.28%*
—0.04
—-0.12

0.33!(*
0.00
—-0.16*

0.40%*
0.03
—0.22%*

0.42%+
0.03
~0.23%*

0.62++
—0.88%*

08

0.01
0.

0.16*
—0.14*

0.03
0.09

11

0.

~0.92%

0.14

16*

0.05

0.00

Sand

Note: ELE, elevation; SG, slope gradient; SA, slope aspect; CA, catchment area; PC, profile curvature; TWI, topographic wetness index; MAP, mean annual precipitation; MAT, mean annual temperature; NDVI, Normalized

Difference Vegetation Index.
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Table 3
Summary statistics of soil organic carbon stocks prediction performance of
boosted regression tree models in 2018.

Depth (cm) MAE RMSE R? LCCC
0-5 0.21 0.27 66.13 0.76
5-15 0.20 0.25 67.62 0.79
15-30 0.20 0.25 67.54 0.78
30-60 0.21 0.28 51.56 0.68
60-100 0.29 0.37 32.59 0.40

Note: MAE, mean absolute error; RMSE; RMSE, root mean squared error; R2,
coefficient of Determination; LCCC, Lin’s concordance correlation coefficient.

drivers of spatial variability in SOCS, followed by topographic variables,
with soil variables exhibited the least RI (Fig. 3). At depths of 0-5 cm
and 5-15 cm, MAT and NDVI were the most influential variables on
SOCS spatial variation, accounting for over 30 % of total RI. Climatic
variables such as MAT or MAP had a more pronounced impact at surface
layers compared to deeper layer (60-100 cm). Similarly, topographic
variable demonstrated moderate significance while soil properties
including sand, silt, clay content showed relatively low RI across all soil
horizons.

3.4. Spatial variation of SOCS

The spatial variation of SOCS at five soil depths was depicted in Fig. 4
for three warming scenarios (1.5 °C, 2 °C, and 4 °C) in 2018. Under these
warming scenarios, the spatial distribution characteristics of SOCS
exhibited a consistent pattern with a gradual decrease from northeast to
southwest. The majority of SOCS was found to be stored in 30-60 cm
layer, followed by 15-30 cm, 60-100 cm, 5-15 cm and 0-5 cm layers
(Fig. 4). Under three distinct scenarios (1.5 °C, 2.0 °C and 4 °C), the
mean SOCS at a depth of 30-60 cm in 2018 were 2.83 =+ 1.27 kg m 2,
2.64 + 1.21 kg m™2, 2.58 + 1.18 kg m 2, and 2.39 + 1.06 kg m 2.
Furthermore, we computed the sum of SOCS for 0-30 cm and 0-100 cm
to determine the overall in the top 30 cm and up to a depth 1 m under
various climate warming scenarios (Fig. 5). With the temperature
increasing by 4°C from the base period (2018), SOCS gradually
decreased in the topsoil (0-30 cm) from 4.47 + 2.79 kg m 2to3.39 +
2.24 kg m~2 and in the whole profile (0-100 cm) from 9.67 + 4.62 kg
m2to7.99 + 3.84 kgm 2,

Additionally, we conducted calculations on the SOCS at various soil
depths in response to climate warming (Table 4). It was observed that
Inner Mongolia exhibited the highest SOCS at a depth of 30-60 cm.
Under three distinct scenarios (1.5 °C, 2.0 °C and 4 °C), the SOCS at a
depth of 30-60 cm in 2018 were 3061 Tg, 3002 Tg, 2778 Tg, and 3283
Tg. Within the entire 1 m-deep soil layer, the majority of SOCS was
predominantly stored within depths ranging from 0 to 30 cm; specif-
ically accounting for approximately 46 %, 45 %, 45 %, and 42 % under
initial conditions in 2018 and scenarios of temperature increase by15°C,
2 °C, and 4 °C respectively. The SOCS responses to various climate
warming scenarios at two depth levels (0-30 cm and 0-100 cm) under
different land use types were presented in Table 5. Grasslands emerged
as the primary storage site for SOCS, accounting for approximately 50 %
of the total SOCS across all three climate warming scenarios. Forest
lands, arable lands, unused lands, construction lands followed in
descending order, while wetlands exhibited the lowest amount of stored
SOCS. Furthermore, the amount SOCS present in the topsoil (0-30 cm)
was equivalent to approximately 46 % of that detected at a soil depth of
1 m. To investigate variations in SOCS with respect to land use and
depth, we presented a sliced distribution along longitude 121°E in
response to climate warming (Fig. 6). We observed a gradual decreased
in SOCS with increasing temperature towards lower latitude. The ma-
jority of stored SOCS was found in grassland and forest land, whereas
changes in arable land and construction land were negligible.
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Fig. 3. Relative importance of environmental variables based on 100 iterations of the BRT model in 2018. ELE, elevation; SG, slope gradient; SA, slope aspect; CA,
catchment area; TWI, topographic wetness index; PC, profile curvature; MAP, mean annual precipitation; MAT, mean annual temperature.

4. Discussion
4.1. Controls of SOCS

The BRT model identified NDVI, MAT and MAP as primary envi-
ronmental variables that exert a significant influence on the spatial
variability of SOCS, followed by topographic and soil property variables
(Fig. 3). In areas characterized by complex and dynamic terrain, topo-
graphic variables were found to be reliable predictors of SOCS (Yang
et al., 2016). The terrain indirectly affects the soil though the material
and energy redistribution, as demonstrated in studies conducted by
Roman-Sanchez et al., (2018) and Gomes et al. (2019). This study
confirmed previous findings that ELE was the dominant variable
affecting spatial variability in SOCS (Yang et al., 2016; Blackburn et al.,
2022). Tsui et al. (2013) have previously shown ELE to be a highly
effective predictor of SOCS in Yangmingshan National Park in Taiwan,
China. We observed that SA exhibited greater relative significance than
ELE in the layer of 60-100 cm depth. The diminishing influence of
environmental variables on SOCS spatial variability with soil depth can
be attributed to inherent physical and chemical properties of the soil
(Yang et al., 2016). SA indirectly affects the physical and chemical
properties of soil in mountainous regions through its regulation of
lighting conditions, precipitation, and temperature (Gomes et al., 2019).
Rezaei and Gilkes (2005) conducted that the SOC varied with depths and
slope direction, showing a significant increase in deep SOC on shady
slopes.

Previous studies have demonstrated that MAT and MAP were the
primary climatic variables influencing the spatial variability of SOCS
(Fang et al., 2005; Nguemezi et al., 2021). Our study revealed that MAT
exhibited the highest RI among all environmental variables at topsoil
(0-5 cm and 5-15 cm), with its significance gradually diminishing with
increasing depth. This finding is consistent with previous research
findings by Zhou et al. (2019) and Jobbagy and Jackson (2000).Wang

et al. (2004) observed a pronounced peak in the correlation between
SOC and MAT in the, topsoil, while its influence gradually decreased
with depth. Using the NSCD and WISE soil database, Jobbagy and
Jackson (2000) found a positive correlation between total SOC content,
precipitation, and clay content, while observing a negative correlation
with temperature. The significance of controlling factors varied
depending on depth: climatic variables played a dominant role in
shallow layers, whereas clay content was identified as the primary
determinant in deeper layers.

The NDVI was identified as a crucial variable influencing the spatial
variation of SOCS, consistent with previous findings by Bangroo et al.
(2020) and Shafizadeh-Moghadam et al. (2022). This study further
confirmed the significance of NDVI, which exhibited the second highest
RI among all variables at depths of 0-5 cm and 5-15 cm, and emerged as
the most influential environmental variable below a depth layer of 5-15
cm (Fig. 3). In the Garhwal Himalaya, India, Kumar et al. (2022) con-
ducted an assessment of SOCS across a gradient of chir pine forests and
established NDVI as a reliable predictor. Mondal et al. (2017) recognized
NDVI as the primary environmental variable governing SOC levels and
observed a strong correlation between topsoil SOC distribution patterns
and NDVI values. Surprisingly, despite reflecting vegetation productiv-
ity and biomass, NDVI exhibited higher RI values at all depths (Fig. 3). In
Inner Mongolia, grasslands and forests account for approximately 75 %
of the total area, significant amounts of humic organic matter are
deposited into soils through dead stems/branches, fallen leaves, and
roots. Furthermore, low winter temperature may impede organic matter
decomposition leading to SOC accumulation. Interestingly though soil
data revealed lower RI values across all depth levels contradicting.
Jobbagy and Jackson (2000) proposition that deep soil SOCS was pri-
marily determined by the clay content; instead minimal RI values
associated with clay content at all depth. We postulate that the impact of
clay content on SOCS may have been mitigated by topographic and
climatic variables. Table 2 further supports this hypothesis by



S. Wang et al.

Initial 2018 )N\
" 0-5 cm
Increase by 1.5°C }N\
" 5-15 cm
Increase by 2°C
l' 0-5 cm
Increase by 4°C
" 0-5 cm
2
SOCS (kg m™)

Ecological Indicators 156 (2023) 111208

15-30 cm

B < s 525 J25-35 |3s5-4sl45-5s I >55 L5 70 st a0 a0

Fig. 4. Spatial distribution of soil organic carbon stocks (SOCS) at different soil depths in response to climate warming.

demonstrating significant correlations between clay content and ELE,
SG, CA, TWI, MAP, and MAT.

4.2. Response of SOCS to climate warming

The spatial distribution trend of SOCS across different soil depths
exhibited similar patterns under different warming scenarios (Fig. 4).
The highest concentration of SOCS was predominantly observed in the
forests and grasslands located in the northeastern region, characterized
by a primarily humid and semi-humid climate. Additionally, Bai et al.
(2004) suggested that the warm summers, sufficient rainfall, and cold,
long winters in Inner Mongolia promoted the accumulation of soil
organic matter. The lower SOCS was primarily distributed in the western
region, which was predominantly a temperate desert arid area charac-
terized with sparse shrub and semi-shrub vegetation. Our research
findings indicated that the spatiotemporal variation of SOCS in Inner
Mongolia was primarily influenced by a combination of climatic and
biological factors, with temperature exerting a greater impact on its
spatial pattern (Fig. 6). This finding aligned with previous research
conducted by Smith et al. (2008) and Gibson et al. (2021). In permafrost
regions of the Northern Hemisphere, Wu et al. (2022) employed ma-
chine learning techniques to estimate SOC distribution at 3 m depth and
identified that MAT and NDVI as primary factors controlling its spatial
distribution in northern and third polar permafrost regions.

To gain a deeper understanding of the impact of climate warming on
the spatial distribution of three-dimensional SOCS, we present a cross-
sectional analysis of soil at a depth of 1 m along longitude 121°E
(Fig. 6). Our observations reveal a gradual decline in SOCS as MAT in-
creases. However, under different climate warming scenarios, there is a
progressive reduction in SOCS, with the maximum decrease occurring at
4 °C. The acceleration of organic matter decomposition due to climate
warming is expected to result in decreased soil carbon content, which
aligns with previous findings by Smith et al, (2008). This phenomenon is
further supported by our study. Jones et al. (2005) proposed that the
increase in decomposition rate caused by climate warming may surpass
net primary productivity, potentially leading to a decline in SOC levels.
Similarly, Zhao et al. (2021) found that SOC loss on the Chinese Loess
Plateau was largely driven by temperature increases.

Additionally, we computed the SOCS of various land use patterns
under different climate warming scenarios (Table 5). In Inner Mongolia,
SOCS was primarily sequestered in grassland and forested areas across
varying degrees of climate warming. With a temperature increased of
1.5°C, 2 °C and 4 °C, SOCS in the topsoil (0-30 cm) decreased by 10 %,
13 % and 24 %; while those in the subsoil (0-100 cm) declined by 7 %, 9
% and 17 %. Among all the land use types, grassland exhibited the most
significant reduction in SOCS, accounting for approximately 50 % of the
total SOCS in both depth layers (Table 5). Climate warming not only
affected litter input, but also had a substantial impact on SOC
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Fig. 5. Spatial distribution of soil organic carbon stocks (SOCS) at 0-30 and 0-100 cm in response to climate warming.
Table 4 relatively accurate predictions of SOCS in response to climate warming
able

Summary statistics of soil organic carbon stocks at different soil depths in
response to climate warming.

Soil layers  Initial 2018  Increase by Increase by Increase by

(cm) (Tg) 1.5°C (Tg) 2°C (Tg) 4°C (Tg)
0-5 965.95 864.64 835.59 716.47
5-15 1855.89 1677.45 1625.6 1415.93
15-30 2343.57 2118.02 2050.61 1792.35
30-60 3283.77 3061.15 3002.05 2778.06
60-100 2728.64 2648.53 2626 2553.03
Total 11177.82 10369.79 10139.85 9255.84

decomposition rate (Fang et al., 2005; Shafizadeh-Moghadam et al.,
2022). Zhao et al. (2021) discovered that climate warming accelerated
soil carbon decomposition and released it into the atmosphere, exacer-
bating global warming. The increase in soil microbial activity and
biomass caused by climate warming played a crucial role in accelerating
SOC decomposition (Jones et al., 2005; Adhikari et al, 2019).
Furthermore, climate warming not only significantly influenced SOC,
but also altered its composition with increasing temperature (Gibson
et al., 2021). Jobbagy and Jackson (2000) observed an increased in the
active carbon pool while the total SOC remained relatively stable,
however, with continuous climate warming trends suggest a decline.

4.3. Research limitations

A combination of BRT model, ESF and STS method can offer

Table 5

at three-dimensional scale. However, this study still had some evident
uncertainties. Firstly, the soil data was obtained from the digitized book
of Soil series of China, which might not fully reflect the actual situation
in the region due to the differences in research objectives and could lead
to prediction errors; Secondly, environmental variables were down-
loaded from various platforms with varying resolutions and formats,
potentially resulting in information loss during resampling to a unified
resolution and format; Thirdly, this study solely employed the ESF for
simulating SOCS variation at different depth; however, the spatial het-
erogeneity of SOCS at vertical depth was intricate. Therefore, simulation
outcomes at certain sampling points may significantly deviate from
actual results and lead to prediction errors; Fourthly, this study only
considered climate warming scenario, of 1.5 °C, 2 °C and 4 °C under
climate change, while assuming that other environmental variables
remain constant. However, it was worth nothing that potential impact of
warming on precipitation was not taken into account in our analysis,
which might result in deviation between simulation results and actual
observations; Fifthly, the influence of environmental variables on SOCS
diminished as soil depth increased, with the spatial variation of deep
SOCS being predominantly shape physical and chemical characteristics
of the soil. It should be noted that this study utilized environmental
variables to simulate deep SOCS, which might deviate from actual
conditions.

Summary statistics of soil organic carbon stocks under different land use patterns in response to climate warming.

Land use patterns Area (km?) Initial 2018 (Tg) Increase by 1.5°C (Tg) Increase by 2°C (Tg) Increase by 4°C (Tg)
0-30 cm 0-100 cm 0-30 cm 0-100 cm 0-30 cm 0-100 cm 0-30 cm 0-100 cm

Arable land 113,922 626.16 1355.12 547.90 1228.43 527.14 1194.56 452.92 1078.75
Forest land 165,060 1295.84 2336.22 1218.27 2224.36 1187.51 2182.54 1047.32 2000.06
Grassland 532,190 2550.44 5648.15 2281.10 5225.52 2202.78 5105.34 1885.97 4616.37
Wetland 10,628 40.93 95.70 35.99 87.23 34.89 85.44 30.57 78.70
Construction land 15,349 67.92 156.63 58.97 141.58 56.95 137.94 50.26 126.94
Unused land 324,477 584.14 1586.01 517.89 1462.67 502.54 1434.03 457.70 1355.01
Total 1,161,626 5165.41 11177.82 4660.12 10369.79 4511.80 10139.85 3924.75 9255.84
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Fig. 6. Vertical distribution of soil organic carbon stocks at the top 1 m depth along longitude 121°E in response to climate warming.
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5. Conclusions

In this study, we have developed a combined of BRT model, ESF, and
STS method to simulate the spatial variation of three-dimensional SOCS
in response to climate warming in Inner Mongolia, China. This inte-
grated model effectively simulates SOCS with higher LCCC and R? and
lower RMSE and MAE. Under different climate warming scenarios, the
spatial distribution of SOCS at various depths exhibited consistent pat-
terns, with higher SOCS predominantly located in the northeast region
and lower SOCS in the west region. The majority of SOCS was stored
within the topsoil layer (0-30 cm), accounting for 46 % of total SOCS
within a 1 m profile. With increasing the climate warming scenarios of
1.5 °C, 2 °C and 4 °C, there was a corresponding decrease in SOCS by
approximately 7 %, 9 % and 17 %, respectively. The reduced SOCS were
mainly distributed in grassland areas, accounting for approximately 50
% of the total reduction. NDVI, MAT and ELE were identified as primary
variables influencing the three-dimensional spatial variation of SOCS. In
summary, these findings provide fundamental data support for ecolog-
ical restoration efforts, sustainable land use practices, and policy
formulation related to land management in Inner Mongolia. Moreover,
they had significance scientific implications for estimating grassland soil
carbon stocks response to climate change while reducing uncertainties
associated with its impact.
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