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A B S T R A C T   

Accurate assessment on temporal and spatial changes in soil organic carbon stocks (SOCS) is essential for 
evaluating the potential of soil carbon sequestration and formulating effective strategies to mitigate climate 
change. While most SOCS studies have focused on topsoil, there remains a lack of comprehensive understanding 
regarding the vertical distribution of SOCS within soil profiles. Furthermore, the key environmental variables 
influencing deep SOCS are still not fully comprehended. In this study, we employed an integrated approach 
combining equal-area spline function, boosted regression trees model (BRT), and the space-for-time substitution 
method to accurately model the three-dimensional distribution of SOCS in response to climate warming in Inner 
Mongolia, China. A total of 12 environmental variables (generated from climate, topography, biological, and soil 
property factor) and 208 soil profile data were selected to construct the model. The 10-fold cross-validation 
technique was employed to assess the predictive performance of the BRT model for soil organic carbon stocks 
(SOCS) at various depths, using four accuracy validation indicators: root mean square error (RMSE), mean ab
solute error (MAE), coefficient of determination (R2), and Lin’s concordance correlation coefficient (LCCC). The 
results demonstrated the BRT model accurately predicted SOCS with higher LCCC and R2 values, as well as lower 
RMSE and MAE values. The predicted map revealed higher SOCS concentration in the northeast and lower 
concentration in the western area. Grassland and forest land were found to store a majority of SOCS, with over 
46 % located the topsoil depth of 30 cm. Furthermore, under different climate warming scenarios with tem
perature increase of 1.5 ℃, 2 ℃ and 4 ℃, there was a corresponding decreased in SOCS by 7 %, 9 % and 17 % 
respectively at a soil depth. Additionally, this study identified MAT and NDVI as primary environmental vari
ables influencing the spatial distribution of three-dimensional scale SOCS. We believed that accurately predicting 
and mapping three-dimensional SOCS under different climate warming scenarios will contribute to the devel
opment of scientifically sound land management policies aimed at enhancing soil carbon sequestration in the 
region.   

1. Introduction 

Soil constitutes the largest terrestrial carbon reservoir (1576 Pg), and 
even minor fluctuations in soil carbon can lead to significant alterations 
in atmospheric CO2 levels (Siegenthaler and Wenk, 1984; Lal, 2004) as 
well as global warming (Eswaran et al., 1993). As the primary constit
uent of land-based carbon reservoir, soil organic carbon (SOC) plays an 
important crucial role in regulating carbon cycle (Lal et al., 2004; Chen 

et al., 2022). Understanding the response and adaptation of SOC to 
climate change is essential for predicting future climate change impacts 
(Berrang-Ford et al., 2011). Despite extensive research, several unre
solved issues remain regarding the impact of warming on soil organic 
carbon stocks (SOCS) and its underlying mechanisms (Smith et al., 
2008). Most studies focus on the topsoil SOCS while lacking sufficient 
understanding of SOC sensitive areas, depth intervals and key factors 
influencing changes in the deep SOCS (Lal et al., 2018; Chen et al., 
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2022). Therefore, it is crucial to develop a reliable and efficient method 
for accurately predicting and mapping the spatial distribution of SOCS at 
three-dimensional scales amidst climate warming. 

To effectively map soil attributes at different depths based on genetic 
soil horizons, it is recommended to standardize soil data to a uniform 
depth and utilize predictive models, particularly for datasets with 
inconsistent soil layer depth (e.g., those collected by Shahbazi et al., 
2019). Currently, two primarily approaches are widely adopted: firstly, 
simulating the spatial distribution of SOCS at a depth of either 30 cm or 
100 cm in accordance with IPCC guidelines (IPCC, 2006); secondly, 
employing the GlobalSoilMap specifications are for spatial predictions 
(Arrouays et al., 2014), supported rescue efforts (Arrouays et al., 2017). 
These well-established specifications have been successfully applied 
across various scales ranging from local regions to entire countries and 
even globally. Notable methods for modeling soil depth functions 
include statistical depth function (Zuo and Serfling, 2000), polynomial 
depth functions, (Jague et al., 2016), exponential depth function (Mis
hra et al., 2009), and equal-area spline function (ESF) (Bishop et al., 
1999). Due to its high accuracy, smoothness, and stability in predicting 
the three-dimensional soil attributes’ depth, ESF is extensively utilized 
in this context as highlight (Dharumarajan and Hegde, 2022). In France, 
Mulder et al. (2016) effectively modeled and predicted SOCS down to 1 
m using the ESF combined with regression tree analysis. Adhikari et al. 
(2014) also adhered to the GlobalSoilMap specification while utilizing 
ESF along with Kriging method for predicting SOCS at five standard soil 
depths in Denmark. 

The conventional approach to mapping the spatial distribution of 
SOCS involves calculating the mean SOCS value for each land use type or 
soil type and extrapolating it to all mapping units, but this method fails 
to capture the true spatial variability of SOCS (Khalil et al., 2013; Wang 
et al., 2020; Nguemezi et al., 2021). To obtain a representative average 
of SOCS levels, a large number of samples are typically required, which 
can be costly and time-consuming (Smith, 2004). Digital soil mapping 
(DSM) methods offer an effectively solution to address these challenges 
by leveraging limited sample data and comprehensive environmental 
analysis (Adhikari et al., 2019). DSM is based on the “scorpan” equation 
that posits soil formation and distribution as a result of a complex in
teractions between environmental variables known as soil formation 
factors such as climate, terrain, parent material, biology, and time 
(Minasny et al., 2013). Moreover, some environmental variables in the 
‘scorpan’ equation can be adjusted through space-for-time substitution 
(STS) to predict future scenario under different climate or land use 
change (Blois et al., 2013). This approach has been widely used in other 
research as demonstrated by Adhikari et al. (2014) and Reyes Rojas et al. 
(2018). 

Various DSM techniques are available for SOC mapping based on 
‘scorpan’, including but not limited to support vector machines (Song 
et al., 2022), random forests (Grimm et al., 2008), stepwise multiple 
linear regression (Olaya-Abril et al., 2017), multivariate regression 
(Bhunia et al., 2019), and boosted regression trees (BRT) (Martin et al., 
2011) among others. However, BRT model is widely acknowledged as an 
efficient and convenient approach that distinguishes itself from tradi
tional tree models due to its integration of multiple simple tree models, 
enabling flexibly handling of linear, logical, exponential or general 
linear problems (Martin et al., 2011; Lamichhane et al., 2019). 

In this study, we integrated ESF with the BRT and STS method to 
model the three-dimensional distribution of SOCS in response to climate 
warming in Inner Mongolia. Inner Mongolia, a long and narrow region 
extending from east to west in northern China, is considered an 
ecological barrier due to its geographical location and significant 
climate differences (Tian et al., 2011). The vegetation in Inner Mongolia 
is primarily distributed in the arid and semi-arid agro-pastoral ecotone, 
making its fragile ecosystem highly vulnerable to climate change im
pacts (Bai et al., 2004; Tian et al., 2011). Investigating the effects of 
climate warming on three-dimensional SOCS in Inner Mongolia will 
facilitate predictions of SOCS stability in this region and provide 

scientific support for comprehending the changing trend of ecosystem 
carbon dynamics under global climate change (Zhang et al., 2022a; 
Zhang et al., 2022b). Therefore, Inner Mongolia serves as an optimal site 
for studying the impact of climate warming on SOCS. Our research ob
jectives were: 1) developing a depth function model for simulating 
vertical distribution of SOCS; 2) identifying key environmental variables 
influencing spatial variation of the three-dimensional SOCS; 3) quanti
fying SOCS response under different land use patterns considering 
climate warming; and, 4) accurately depicting spatial distribution of 
multiple depths SOCS under various climate warming scenarios. 

2. Materials and methods 

2.1. Research region 

This study was conducted in the Inner Mongolia, located in northern 
China (37◦-53◦N, 97.2◦-126◦E) (Fig. 1), encompassing an approximately 
area of 1.1 × 104 km2. It shares borders with Russia and Mongolia to the 
north, spanning across the regions of Northeast China, North China, and 
Northwest China. Geographically demarcated by mountains ranges, the 
region exhibits a predominantly temperate continental monsoon climate 
(Zhang et al., 2022a; Zhang et al., 2022b). Weather patterns within the 
study area are characterized by a sudden temperature rise in spring 
followed by autumn, a short yet hot summer season, concentrated pre
cipitation events, long and cold winter often accompanied by early frost 
occurrence (Bai et al., 2004). Most regions experience an annual sun
shine duration exceeding 2700 h; however, the western region of Ala
shan Plateau receives over 3400 h of sunshine. Inner Mongolia is 
recognized as China’s second-largest plateau due to its complex terrain 
and average altitude of approximately 1000 masl. Notably diverse 
topography exists within Inner Mongolia with plateau accounting for 
53.4 %, mountains and hills comprising 37.3 %, plains and mudflat 
constituting for 8.5 %, while water bodies the remaining portion. 

The soil type in Inner Mongolia exhibits significantly variation from 
east to west, resulting in a corresponding shift in the soil belt from 
northeast to southwest. In the eastern region is characterized by black 
soil, while the western region predominantly consists of dark brown, 
chernozem, chestnut, brown, black loessial, calcareous lime, sandy land 
and gray-brown desert soils (Bai et al., 2004; Chen et al., 2021). Among 
these soil zones, black soil stands out with its superior natural fertility, 
favorable structure and moisture condition for cultivation purposes. 
Consequently, it is highly suitable for agricultural development. The 
chernozem’s inherent fertility makes it an excellent choice for crop 
cultivation as well as forestry and animal husbandry activities. Grass
land covers the largest proportion of land use types at 46 %, followed by 
unused land (28 %), forest land (14 %), arable land (10 %), while 
construction and wetland each account for only 1 %. 

2.2. Soil profile data 

The soil dataset was digitized from the book “Soil series of China, 
Inner Mongolia Volume” published by National Science and Technology 
Basic Resources Survey Program of China (2008FY110600). This 
collaborative effort between Shenyang Agricultural University and 
Nanjing Institute of Soil Research, Chinese Academy of Sciences resulted 
in its officially published in 2020. Fieldwork conducted between 2017 
and 2018 collected soil profile information, which was subsequently 
analyzed at Shenyang Agricultural University in 2018. We meticulously 
digitized all the soil profile data from the aforementioned book to create 
an up-to-date soil dataset for Inner Mongolia, China. The dataset in
cludes comprehensive described of each soil profile along with analyzed 
results for soil organic carbon content using the dry combustion method 
(Matejovic, 1993) based on a total of 809 soil samples. Additionally bulk 
density was determined through oven-dry methods (Erbach, 1987), and 
gravel content information is also provided. 
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2.3. Calculation of SOCS 

The objective of this study was to investigate the spatial variation of 
three-dimensional SOCS under different climate warming scenarios. We 
employed the Batjes (1996) formula to calculate SOCS in each special 
soil layer throughout the entire profile (Eq. (1): 

SOCS =
∑k

i=1
SOCcontent =

∑k

i=1
SOCconcentration × BDi × Di × (1 − Si) (1)  

where SOCS represents the SOC density (kg m− 2); SOCcontent, denotes the 
SOC content (kg m− 2) of each k layer; SOCconcentration refers to the SOC 
concentration (g kg− 1); BD stands for the bulk density (g cm− 3); D rep
resents the thickness of soil layer (m); S indicated the volume fraction of 
fragments > 2 mm (%); and i refers to a specific layer within the soil 
profile. 

2.4. Environmental data 

In this study, a total of 12 environmental variables (including soil, 
topographic, climatic, and biological variables) were selected to accu
rately predict the three-dimensional SOCS response to climate warming 
in Inner Mongolia. Due to the diverse sources of data on environmental 
biological variables, all data layers were reprojected and resampled to 
Albers Conical Equal Area projection at a 90 m spatial resolution using 
ArcGIS 10.2 (ESRI Inc., USA). Subsequent analysis and modeling of the 
data were conducted using R software (R Development Core Team, 
2013). 

2.4.1. Climatic variables 
Climate variables, such as temperature and precipitation, exert a 

substantial impact influence on the accumulation and decomposition of 
SOC (Gibson et al., 2021). The climatic variables utilized in this study 
encompassed mean annual temperature (MAT) and mean annual pre
cipitation (MAP), obtained from the Geospatial Data Cloud site of the 

Fig. 1. Location of the study area and sampling point map overlaid on the 90-m digital elevation model.  
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Chinese Academy of Sciences (http://www.gscloud.cn). MAT and MAP 
were derived from daily observation collected by 2400 meteorological 
stations nationwide, which were subsequently interpolated using thin 
pate smooth splines with ANUSPLIN software (McKenney et al., 2006). 
Initially available at a spatial resolution of 1 km × 1 km, the downloaded 
data was resampled to a higher resolution of 90 m × 90 m. Furthermore, 
to address the potential impact of climate warming on variation in SOCS, 
we incorporated scenarios representing an increase in MAT by 1.5 ℃, 2 
℃ and 4 ℃ into the MAT layer to derive corresponding variables for 
different climate warming scenarios (Lan et al., 2021). The Paris Climate 
Agreement establishes a global temperature rise limit of 1.5 ℃, as 
indicated by King and Karoly (2017). Once this threshold is surpasses, it 
will have significantly implications for human daily life and production, 
leading to more frequent occurrences of extreme high temperature, 
heavy rainfall, drought, and wildfire (Aerenson et al., 2018). If the 
global average temperature exceeds a 2 ℃ increase from pre-industrial 
levels, it will exacerbate the adverse impacts of climate change on both 
economic growth and environmental quality (King and Karoly, 2017). A 
rise to or above 4℃ would not only result in the extinction of numerous 
endangered species but also the likelihood of wide-range and impact 
extreme weather events (Adams et al., 2013). Therefore, this study has 
considered these three distinct warming scenarios to model and predict 
SOCS in in Inner Mongolia. 

2.4.2. Topographic variables 
Six topographic variables, namely slope gradient (SG), elevation 

(ELE), slope aspect (SA), catchment area (CA), profile curvature (PG), 
and topographic wetness index (TWI), were derived from a digital 
elevation model (DEM) obtained from the Geospatial Data Cloud site of 
the Chinese Academy of Sciences (http://www.gscloud.cn). These 
topographic variables are commonly utilized in predicting soil proper
ties, such as SOCS, by indicating the redistribution of surface materials, 
water, and energy fluxes within a given landscape. (Román-Sánchez 
et al., 2018; Blackburn et al., 2022). Overall, ELE influences the for
mation and distribution of soil properties, enzymes, and microorgan
isms, thereby affecting SOC levels and leading to feedback on SOCS 
change (Tsozué et al., 2019). SG and SA impact SOCS through factors 
such as soil thickness, vegetation coverage, organic matter input, and 
human disturbance (Wang et al., 2020). PC exerts an influence on flow 
velocity and drainage processes that subsequently affect erosion and 
deposition dynamics (Blackburn et al., 2022). TWI, and CA compre
hensively consider the influence of terrain characteristics on potential 
soil moisture retention and distribution (Román-Sánchez et al., 2018). 
ELE. SG, SA, and PC were derived from DEM data in ArcGIS 10.2, while 
CA and TWI were calculated using SAGA GIS (Conrad et al., 2015). 

2.4.3. Biological variables 
The Normalized Difference Vegetation Index (NDVI) plays a crucial 

role in detecting vegetation growth and coverage, as the prediction of 
SOC levels (Adhikari et al., 2019; Shafizadeh-Moghadam et al., 2022). 
Jobbágy and Jackson (2000) established a robust correlation between 
the distribution pattern of SOC and NDVI. Moreover, due to its capacity 
to indicate vegetation productivity and biomass, NDVI is extensively 
employed for predicting SOCS. The 2018 NDVI data was acquired from 
the Geospatial Data Cloud site of the Chinese Academy of Sciences (htt 
ps://www.gscloud.cn) and resampled to a 90-m grid. 

2.4.4. Soil variables 
The study utilized soil texture data, encompassing percentages of 

sand, silt and clay content, as predictors for SOCS. Soil texture exerts a 
well-established influence on diverse properties and processes such as 
permeability, moisture retention, aggregation and fertility (Dharumar
ajan and Hegde, 2022). The soil texture data used in this study were 
acquired from the Resource and Environmental Science and Data Center 
of the Chinese Academy of Sciences (https://www.resdc.cn). This 
dataset was generated by integrating a 1:1 million scale soil survey map 

with soil profile data obtained from the second national soil survey, 
these data were converted into a raster format with a resolution of 1 km 
× 1 km. 

2.5. Prediction models 

This study used equal-area spline function, boosted regression tree 
(BRT), and Space-for-time substitution method to predict SOCS at 
different soil depths in response to climate warming. The specific 
flowchart of the methodology was shown in Fig. 2. 

2.5.1. Equal-area spline function 
The Malone et al. (2009) equal-area spline function, which is based 

on Bishop et al.’s (1999) quadratic spline function, was employed using 
SplineTool Version2 (ASRIS, 2011) to model SOCS profile measure
ments. This tool enables the modeling of a continuous depth function 
based on discrete SOCS measurements obtained from non-overlapping 
soil layers or horizons. The modeled values can be aggregated into 
specific intervals representing different soil depth. It is assumed that the 
measurement from each soil layer i represents the mean value, ac
counting for any potential measurement error. Mathematically, the 
measured can be represented as follows: 

yi = fi + ei (2)  

where yi represents the actual mean value of soil attribute within the 
given interval (xi-1, xi); f represents the average measurement value; ei 
represents the measurement error and independent; i represents the soil 
depth layer. The underlying assumption posits a smooth variation of soil 
attribute values with depth. The function f (x) denotes a spline obtained 
through minimizing Di: 

Di =
1
n

∑n

i=1
(yi − fi)+ λ

∫ xn

x0

[
f m(x)2]dx (3) 

The first term of equation represents the data fitting, while the sec
ond term quantifies the smoothness of function f (x) through its first 
derivative f ’(x). The parameter λ determines the trade-off between 
fitting and roughness, and this study tested five different values for λ 
(0.0001, 0.001, 0.01, 0.1, and 1) to identify the optimal fit. Among these 
values, a λ = 0.1 yielded the lowest root mean square error. 

2.5.2. Boosted regression trees 
The BRT model was utilized to simulate the spatial variation of SOCS 

and assess the relative importance (RI%) of climate, terrain, biological 
and soil variables on SOCS. The BRT model combines regression tree 
algorithm and boosting method, offering several advantages such as 
adaptability to complex nonlinear relationships, automatic handling of 
variable interactions, and improved stability and accuracy (Elith et al., 
2008; Wang et al., 2020). The BRT model requires user to specify four 
parameters: learning rate (LR), tree complexity (TC), bag fraction (BF) 
and tree number (NT) (Elith et al., 2008). LR represents the influence of 
an individual tree on the final model’s performance (Wang et al., 2020). 
TC reflects the intricate and multifaceted nature of each decision tree 
(Martin et al., 2011). BF index indicates the degree of randomness in the 
data set selection levels of randomness (Wang et al., 2022). Determining 
NT determination can be achieved by combination LR and TC (Lam
ichhane et al., 2019).To identify optimal parameters, we tested various 
combinations within ranges for LR (0.25–0.0025), TC (8–12), BF 
(0.55–0.75) and NT (800–2500). Ultimately, we determined the optimal 
values for LR, TC, BF, and NT were respectively found to be 0.025, 12, 
0.75, and 1500 with minimal error rates. 

2.5.3. Space-for-time substitution method 
The formation and development of soils are influenced by a range of 

environmental variables. These factors, collectively referred to as 
“scorpan” factors of soil formation (McBratney et al., 2003; Adhikari 
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Fig. 2. Flowchart of the methodology.  
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et al., 2019), play crucial roles in the process of soil development. The 
spatial–temporal effects of these factors can be quantified using a STS 
method (Adhikari et al., 2019), where one factor is manipulated while 
keeping other factors constant. For instance, to investigate the impact of 
temperature on the distribution of SOCS, various temperature scenarios 
can be tested and their effects on SOCS can be measured. This approach 
has effectively assessed the spatial variation of SOCS across diverse land 
use and climate change scenarios in Brazil, Australia, Chile, United 
States, and China (Strey et al., 2016; Adhikari et al., 2019; Gomes et al., 
2019; Wang et al., 2022). However, despite its the validity of this 
method cannot be tested without verification data for future scenario 
and uncertainties may exist (Strey et al., 2016; Gray and Bishop, 2016; 
Reyes Rojas et al., 2018). To investigate the response of the SOCS to 
future climate warming scenario in Inner Mongolia, this study utilized 
the profile data from 2018 along with 12 environmental variables as 
predictors. It was assumed that environmental factors such as parent 
material or terrain would remain relatively stable over a given period in 
the future. The STS method was employed to capture the spatiotemporal 
dynamics of SOCS in response to anticipated temperature fluctuations. 

2.6. Accuracy evaluation 

The predictive performance of BRT model was evaluated using a 10- 
fold cross-validation technique, which involved calibrating and testing 
of each sample data point. Four validation indices, namely MAE, RMSE, 
coefficient of determination (R2), and Lin’s consistency correlation co
efficient (LCCC) (Lin, 1989) were utilized to assess the model’s perfor
mance (Eq. 4–7). 

MAE =
1
n
∑n

i=1
|ai − bi| (4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ai − bi)

2

√

(5)  

R2 =

∑n
i=1(ai − bi)

2

∑n
i=1(bi − bi)

2 (6)  

LCCC =
2r∂a∂b

∂2
a + ∂2

b + (a + b)2 (7)  

where ai and bi, represent predicted values and measured values; a, and b 
is the mean of predicted values and measured values; n represents the 
number of sampling points; r denotes the correlation coefficient between 

measured and predicted values; ∂a and ∂b are variances of predicted and 
measured values. 

3. Results 

3.1. Exploratory data analysis 

The continuous depth function of SOCS was modeled using an ESF. 
Table 1 presents summary statistics for aggregated SOCS at different 
depths (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm and 60–100 cm), along 
with the corresponding statistics for predictors for SOCS. In the topsoil 
(0–5 cm), the range of SOCS varied from 0.03 to 4.13 kg m− 2, while in 
the subsoil (60–100 cm), it ranged from 0.07 to 14.71 kg m− 2. The mean 
value of SOCS increased gradually with depth, reaching its peak at a 
depth of 30–60 cm and exceeding that of the surface layer by more than 
threefold. All soil depths exhibited positively skewed distributions in 
terms of their SOCS values, with the highest skew value being observed 
at a depth of 15–30 cm. 

The correlation coefficients between SOCS and environmental vari
ables revealed significantly positive correlations with SG, MAP, NDVI, 
clay, and negative correlations with CA, TWI, and MAT at all soil depth 
levels (Table 2). Among these variables, MAT exhibited the stronger 
correlation with SOCS, followed by NDVI and MAP. We assessed mul
ticollinearity among these variables by calculating the variance inflation 
factor (VIF) while considering their intercorrelations. The results indi
cated that there was no issue of multicollinearity in the predicting SOCS 
in 2018 as evidenced by each environmental variable’s VIF. 

3.2. Model performance 

To enhance prediction robustness, the BRT model was executed 100 
times and the average values were utilized as the final forecasted 
outcome. The BRT model demonstrated satisfactory predictive perfor
mance across all soil depths; however, a decreasing trend in accuracy 
was observed with increasing depth. Optimal performance was observed 
at 5–15 cm and 15–30 cm, while suboptimal performance occurred at 
greater depths (60–100 cm) (Table 3), as evidenced by higher R2 and 
LCCC scores and lower MAE and RMSE scores. 

3.3. Relative importance of environmental variables 

The BRT model was iterated 100 times and the average RI of each 
environmental variable was calculated. To ensure comparability across 
different depth layers, the RI values were then standardized to scale to 
100 %. Across all depth layers, NDVI, MAT and MAP were the primary 

Table 1 
Descriptive statistics of soil organic carbon stocks (SOCS) at different depths and environmental variables based on 208 sampling points.  

Property Unit Min. Max. Mean Skewness Kurtosis 

SOCS0-5 kg m− 2 0.03 4.13 0.90  1.45  3.18 
SOCS5-15 kg m− 2 0.11 10.1 1.79  1.95  6.48 
SOCS15-30 kg m− 2 0.15 17.9 2.34  2.86  16.6 
SOCS30-60 kg m− 2 0.21 14.0 3.35  1.42  2.12 
SOCS60-100 kg m− 2 0.07 14.7 3.01  1.63  3.22 
ELE m 126.7 1945.5 938.7  − 0.16  − 0.27 
SG Degree 0.01 6.80 0.81  2.46  8.86 
SA Degree 1.10 357.3 158.1  0.37  − 1.20 
CA m2 m− 1 7,330,910 2,306,450,000 723,194,273  0.54  − 0.76 
PC Index − 0.02 0.02 0.00  0.40  16.6 
TWI Index 8.38 15.02 12.4  − 0.13  − 0.86 
MAP Celsius degree 39.9 606.3 297.9  − 0.23  − 0.85 
MAT mm − 2.07 10.7 5.13  − 0.19  − 1.01 
NDVI Index 0.06 0.86 0.48  − 0.27  − 1.17 
Clay Percentage 4.00 33.0 17.3  − 0.14  − 0.68 
Silt Percentage 7.00 49.0 27.0  − 0.07  0.59 
Sand Percentage 24.0 85.0 55.5  0.05  − 0.39 

Note: ELE, elevation; SG, slope gradient; SA, slope aspect; CA, catchment area; PC, profile curvature; TWI, topographic wetness index; MAP, mean annual precipi
tation; MAT, mean annual temperature; NDVI, Normalized Difference Vegetation Index. 
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drivers of spatial variability in SOCS, followed by topographic variables, 
with soil variables exhibited the least RI (Fig. 3). At depths of 0–5 cm 
and 5–15 cm, MAT and NDVI were the most influential variables on 
SOCS spatial variation, accounting for over 30 % of total RI. Climatic 
variables such as MAT or MAP had a more pronounced impact at surface 
layers compared to deeper layer (60–100 cm). Similarly, topographic 
variable demonstrated moderate significance while soil properties 
including sand, silt, clay content showed relatively low RI across all soil 
horizons. 

3.4. Spatial variation of SOCS 

The spatial variation of SOCS at five soil depths was depicted in Fig. 4 
for three warming scenarios (1.5 ℃, 2 ℃, and 4 ℃) in 2018. Under these 
warming scenarios, the spatial distribution characteristics of SOCS 
exhibited a consistent pattern with a gradual decrease from northeast to 
southwest. The majority of SOCS was found to be stored in 30–60 cm 
layer, followed by 15–30 cm, 60–100 cm, 5–15 cm and 0–5 cm layers 
(Fig. 4). Under three distinct scenarios (1.5 ℃, 2.0 ℃ and 4 ℃), the 
mean SOCS at a depth of 30–60 cm in 2018 were 2.83 ± 1.27 kg m− 2, 
2.64 ± 1.21 kg m− 2, 2.58 ± 1.18 kg m− 2, and 2.39 ± 1.06 kg m− 2. 
Furthermore, we computed the sum of SOCS for 0–30 cm and 0–100 cm 
to determine the overall in the top 30 cm and up to a depth 1 m under 
various climate warming scenarios (Fig. 5). With the temperature 
increasing by 4℃ from the base period (2018), SOCS gradually 
decreased in the topsoil (0–30 cm) from 4.47 ± 2.79 kg m− 2 to 3.39 ±
2.24 kg m− 2 and in the whole profile (0–100 cm) from 9.67 ± 4.62 kg 
m− 2 to 7.99 ± 3.84 kg m− 2. 

Additionally, we conducted calculations on the SOCS at various soil 
depths in response to climate warming (Table 4). It was observed that 
Inner Mongolia exhibited the highest SOCS at a depth of 30–60 cm. 
Under three distinct scenarios (1.5 ℃, 2.0 ℃ and 4 ℃), the SOCS at a 
depth of 30–60 cm in 2018 were 3061 Tg, 3002 Tg, 2778 Tg, and 3283 
Tg. Within the entire 1 m-deep soil layer, the majority of SOCS was 
predominantly stored within depths ranging from 0 to 30 cm; specif
ically accounting for approximately 46 %, 45 %, 45 %, and 42 % under 
initial conditions in 2018 and scenarios of temperature increase by15℃, 
2 ℃, and 4 ℃ respectively. The SOCS responses to various climate 
warming scenarios at two depth levels (0–30 cm and 0–100 cm) under 
different land use types were presented in Table 5. Grasslands emerged 
as the primary storage site for SOCS, accounting for approximately 50 % 
of the total SOCS across all three climate warming scenarios. Forest 
lands, arable lands, unused lands, construction lands followed in 
descending order, while wetlands exhibited the lowest amount of stored 
SOCS. Furthermore, the amount SOCS present in the topsoil (0–30 cm) 
was equivalent to approximately 46 % of that detected at a soil depth of 
1 m. To investigate variations in SOCS with respect to land use and 
depth, we presented a sliced distribution along longitude 121◦E in 
response to climate warming (Fig. 6). We observed a gradual decreased 
in SOCS with increasing temperature towards lower latitude. The ma
jority of stored SOCS was found in grassland and forest land, whereas 
changes in arable land and construction land were negligible. 
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Table 3 
Summary statistics of soil organic carbon stocks prediction performance of 
boosted regression tree models in 2018.  

Depth (cm) MAE RMSE R2 LCCC 

0–5  0.21  0.27  66.13  0.76 
5–15  0.20  0.25  67.62  0.79 
15–30  0.20  0.25  67.54  0.78 
30–60  0.21  0.28  51.56  0.68 
60–100  0.29  0.37  32.59  0.40 

Note: MAE, mean absolute error; RMSE; RMSE, root mean squared error; R2, 
coefficient of Determination; LCCC, Lin’s concordance correlation coefficient. 
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4. Discussion 

4.1. Controls of SOCS 

The BRT model identified NDVI, MAT and MAP as primary envi
ronmental variables that exert a significant influence on the spatial 
variability of SOCS, followed by topographic and soil property variables 
(Fig. 3). In areas characterized by complex and dynamic terrain, topo
graphic variables were found to be reliable predictors of SOCS (Yang 
et al., 2016). The terrain indirectly affects the soil though the material 
and energy redistribution, as demonstrated in studies conducted by 
Román-Sánchez et al., (2018) and Gomes et al. (2019). This study 
confirmed previous findings that ELE was the dominant variable 
affecting spatial variability in SOCS (Yang et al., 2016; Blackburn et al., 
2022). Tsui et al. (2013) have previously shown ELE to be a highly 
effective predictor of SOCS in Yangmingshan National Park in Taiwan, 
China. We observed that SA exhibited greater relative significance than 
ELE in the layer of 60–100 cm depth. The diminishing influence of 
environmental variables on SOCS spatial variability with soil depth can 
be attributed to inherent physical and chemical properties of the soil 
(Yang et al., 2016). SA indirectly affects the physical and chemical 
properties of soil in mountainous regions through its regulation of 
lighting conditions, precipitation, and temperature (Gomes et al., 2019). 
Rezaei and Gilkes (2005) conducted that the SOC varied with depths and 
slope direction, showing a significant increase in deep SOC on shady 
slopes. 

Previous studies have demonstrated that MAT and MAP were the 
primary climatic variables influencing the spatial variability of SOCS 
(Fang et al., 2005; Nguemezi et al., 2021). Our study revealed that MAT 
exhibited the highest RI among all environmental variables at topsoil 
(0–5 cm and 5–15 cm), with its significance gradually diminishing with 
increasing depth. This finding is consistent with previous research 
findings by Zhou et al. (2019) and Jobbágy and Jackson (2000).Wang 

et al. (2004) observed a pronounced peak in the correlation between 
SOC and MAT in the, topsoil, while its influence gradually decreased 
with depth. Using the NSCD and WISE soil database, Jobbágy and 
Jackson (2000) found a positive correlation between total SOC content, 
precipitation, and clay content, while observing a negative correlation 
with temperature. The significance of controlling factors varied 
depending on depth: climatic variables played a dominant role in 
shallow layers, whereas clay content was identified as the primary 
determinant in deeper layers. 

The NDVI was identified as a crucial variable influencing the spatial 
variation of SOCS, consistent with previous findings by Bangroo et al. 
(2020) and Shafizadeh-Moghadam et al. (2022). This study further 
confirmed the significance of NDVI, which exhibited the second highest 
RI among all variables at depths of 0–5 cm and 5–15 cm, and emerged as 
the most influential environmental variable below a depth layer of 5–15 
cm (Fig. 3). In the Garhwal Himalaya, India, Kumar et al. (2022) con
ducted an assessment of SOCS across a gradient of chir pine forests and 
established NDVI as a reliable predictor. Mondal et al. (2017) recognized 
NDVI as the primary environmental variable governing SOC levels and 
observed a strong correlation between topsoil SOC distribution patterns 
and NDVI values. Surprisingly, despite reflecting vegetation productiv
ity and biomass, NDVI exhibited higher RI values at all depths (Fig. 3). In 
Inner Mongolia, grasslands and forests account for approximately 75 % 
of the total area, significant amounts of humic organic matter are 
deposited into soils through dead stems/branches, fallen leaves, and 
roots. Furthermore, low winter temperature may impede organic matter 
decomposition leading to SOC accumulation. Interestingly though soil 
data revealed lower RI values across all depth levels contradicting. 
Jobbágy and Jackson (2000) proposition that deep soil SOCS was pri
marily determined by the clay content; instead minimal RI values 
associated with clay content at all depth. We postulate that the impact of 
clay content on SOCS may have been mitigated by topographic and 
climatic variables. Table 2 further supports this hypothesis by 

Fig. 3. Relative importance of environmental variables based on 100 iterations of the BRT model in 2018. ELE, elevation; SG, slope gradient; SA, slope aspect; CA, 
catchment area; TWI, topographic wetness index; PC, profile curvature; MAP, mean annual precipitation; MAT, mean annual temperature. 
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demonstrating significant correlations between clay content and ELE, 
SG, CA, TWI, MAP, and MAT. 

4.2. Response of SOCS to climate warming 

The spatial distribution trend of SOCS across different soil depths 
exhibited similar patterns under different warming scenarios (Fig. 4). 
The highest concentration of SOCS was predominantly observed in the 
forests and grasslands located in the northeastern region, characterized 
by a primarily humid and semi-humid climate. Additionally, Bai et al. 
(2004) suggested that the warm summers, sufficient rainfall, and cold, 
long winters in Inner Mongolia promoted the accumulation of soil 
organic matter. The lower SOCS was primarily distributed in the western 
region, which was predominantly a temperate desert arid area charac
terized with sparse shrub and semi-shrub vegetation. Our research 
findings indicated that the spatiotemporal variation of SOCS in Inner 
Mongolia was primarily influenced by a combination of climatic and 
biological factors, with temperature exerting a greater impact on its 
spatial pattern (Fig. 6). This finding aligned with previous research 
conducted by Smith et al. (2008) and Gibson et al. (2021). In permafrost 
regions of the Northern Hemisphere, Wu et al. (2022) employed ma
chine learning techniques to estimate SOC distribution at 3 m depth and 
identified that MAT and NDVI as primary factors controlling its spatial 
distribution in northern and third polar permafrost regions. 

To gain a deeper understanding of the impact of climate warming on 
the spatial distribution of three-dimensional SOCS, we present a cross- 
sectional analysis of soil at a depth of 1 m along longitude 121◦E 
(Fig. 6). Our observations reveal a gradual decline in SOCS as MAT in
creases. However, under different climate warming scenarios, there is a 
progressive reduction in SOCS, with the maximum decrease occurring at 
4 ℃. The acceleration of organic matter decomposition due to climate 
warming is expected to result in decreased soil carbon content, which 
aligns with previous findings by Smith et al, (2008). This phenomenon is 
further supported by our study. Jones et al. (2005) proposed that the 
increase in decomposition rate caused by climate warming may surpass 
net primary productivity, potentially leading to a decline in SOC levels. 
Similarly, Zhao et al. (2021) found that SOC loss on the Chinese Loess 
Plateau was largely driven by temperature increases. 

Additionally, we computed the SOCS of various land use patterns 
under different climate warming scenarios (Table 5). In Inner Mongolia, 
SOCS was primarily sequestered in grassland and forested areas across 
varying degrees of climate warming. With a temperature increased of 
1.5 ℃, 2 ℃ and 4 ℃, SOCS in the topsoil (0–30 cm) decreased by 10 %, 
13 % and 24 %; while those in the subsoil (0–100 cm) declined by 7 %, 9 
% and 17 %. Among all the land use types, grassland exhibited the most 
significant reduction in SOCS, accounting for approximately 50 % of the 
total SOCS in both depth layers (Table 5). Climate warming not only 
affected litter input, but also had a substantial impact on SOC 

Fig. 4. Spatial distribution of soil organic carbon stocks (SOCS) at different soil depths in response to climate warming.  
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decomposition rate (Fang et al., 2005; Shafizadeh-Moghadam et al., 
2022). Zhao et al. (2021) discovered that climate warming accelerated 
soil carbon decomposition and released it into the atmosphere, exacer
bating global warming. The increase in soil microbial activity and 
biomass caused by climate warming played a crucial role in accelerating 
SOC decomposition (Jones et al., 2005; Adhikari et al., 2019). 
Furthermore, climate warming not only significantly influenced SOC, 
but also altered its composition with increasing temperature (Gibson 
et al., 2021). Jobbágy and Jackson (2000) observed an increased in the 
active carbon pool while the total SOC remained relatively stable, 
however, with continuous climate warming trends suggest a decline. 

4.3. Research limitations 

A combination of BRT model, ESF and STS method can offer 

relatively accurate predictions of SOCS in response to climate warming 
at three-dimensional scale. However, this study still had some evident 
uncertainties. Firstly, the soil data was obtained from the digitized book 
of Soil series of China, which might not fully reflect the actual situation 
in the region due to the differences in research objectives and could lead 
to prediction errors; Secondly, environmental variables were down
loaded from various platforms with varying resolutions and formats, 
potentially resulting in information loss during resampling to a unified 
resolution and format; Thirdly, this study solely employed the ESF for 
simulating SOCS variation at different depth; however, the spatial het
erogeneity of SOCS at vertical depth was intricate. Therefore, simulation 
outcomes at certain sampling points may significantly deviate from 
actual results and lead to prediction errors; Fourthly, this study only 
considered climate warming scenario, of 1.5 ℃, 2 ℃ and 4 ℃ under 
climate change, while assuming that other environmental variables 
remain constant. However, it was worth nothing that potential impact of 
warming on precipitation was not taken into account in our analysis, 
which might result in deviation between simulation results and actual 
observations; Fifthly, the influence of environmental variables on SOCS 
diminished as soil depth increased, with the spatial variation of deep 
SOCS being predominantly shape physical and chemical characteristics 
of the soil. It should be noted that this study utilized environmental 
variables to simulate deep SOCS, which might deviate from actual 
conditions. 

Fig. 5. Spatial distribution of soil organic carbon stocks (SOCS) at 0–30 and 0–100 cm in response to climate warming.  

Table 4 
Summary statistics of soil organic carbon stocks at different soil depths in 
response to climate warming.  

Soil layers 
(cm) 

Initial 2018 
(Tg) 

Increase by 
1.5℃ (Tg) 

Increase by 
2℃ (Tg) 

Increase by 
4℃ (Tg) 

0–5  965.95  864.64 835.59  716.47 
5–15  1855.89  1677.45 1625.6  1415.93 
15–30  2343.57  2118.02 2050.61  1792.35 
30–60  3283.77  3061.15 3002.05  2778.06 
60–100  2728.64  2648.53 2626  2553.03 
Total  11177.82  10369.79 10139.85  9255.84  

Table 5 
Summary statistics of soil organic carbon stocks under different land use patterns in response to climate warming.  

Land use patterns Area (km2) Initial 2018 (Tg) Increase by 1.5℃ (Tg) Increase by 2℃ (Tg) Increase by 4℃ (Tg)   

0–30 cm 0–100 cm 0–30 cm 0–100 cm 0–30 cm 0–100 cm 0–30 cm 0–100 cm 

Arable land 113,922  626.16  1355.12  547.90  1228.43  527.14  1194.56  452.92  1078.75 
Forest land 165,060  1295.84  2336.22  1218.27  2224.36  1187.51  2182.54  1047.32  2000.06 
Grassland 532,190  2550.44  5648.15  2281.10  5225.52  2202.78  5105.34  1885.97  4616.37 
Wetland 10,628  40.93  95.70  35.99  87.23  34.89  85.44  30.57  78.70 
Construction land 15,349  67.92  156.63  58.97  141.58  56.95  137.94  50.26  126.94 
Unused land 324,477  584.14  1586.01  517.89  1462.67  502.54  1434.03  457.70  1355.01 
Total 1,161,626  5165.41  11177.82  4660.12  10369.79  4511.80  10139.85  3924.75  9255.84  
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Fig. 6. Vertical distribution of soil organic carbon stocks at the top 1 m depth along longitude 121◦E in response to climate warming.  
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5. Conclusions 

In this study, we have developed a combined of BRT model, ESF, and 
STS method to simulate the spatial variation of three-dimensional SOCS 
in response to climate warming in Inner Mongolia, China. This inte
grated model effectively simulates SOCS with higher LCCC and R2 and 
lower RMSE and MAE. Under different climate warming scenarios, the 
spatial distribution of SOCS at various depths exhibited consistent pat
terns, with higher SOCS predominantly located in the northeast region 
and lower SOCS in the west region. The majority of SOCS was stored 
within the topsoil layer (0–30 cm), accounting for 46 % of total SOCS 
within a 1 m profile. With increasing the climate warming scenarios of 
1.5 ℃, 2 ℃ and 4 ℃, there was a corresponding decrease in SOCS by 
approximately 7 %, 9 % and 17 %, respectively. The reduced SOCS were 
mainly distributed in grassland areas, accounting for approximately 50 
% of the total reduction. NDVI, MAT and ELE were identified as primary 
variables influencing the three-dimensional spatial variation of SOCS. In 
summary, these findings provide fundamental data support for ecolog
ical restoration efforts, sustainable land use practices, and policy 
formulation related to land management in Inner Mongolia. Moreover, 
they had significance scientific implications for estimating grassland soil 
carbon stocks response to climate change while reducing uncertainties 
associated with its impact. 
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