001028714 001__ 1028714
001028714 005__ 20250204113910.0
001028714 0247_ $$2doi$$a10.1007/s12021-024-09673-7
001028714 0247_ $$2ISSN$$a1539-2791
001028714 0247_ $$2ISSN$$a1559-0089
001028714 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04771
001028714 0247_ $$2pmid$$a38976151
001028714 0247_ $$2WOS$$aWOS:001264639700002
001028714 037__ $$aFZJ-2024-04771
001028714 041__ $$aEnglish
001028714 082__ $$a540
001028714 1001_ $$0P:(DE-Juel1)186651$$aNebli, Ahmed$$b0$$eCorresponding author
001028714 245__ $$aGenerative Modelling of Cortical Receptor Distributions from Cytoarchitectonic Images in the Macaque Brain
001028714 260__ $$aNew York, NY$$bSpringer$$c2024
001028714 3367_ $$2DRIVER$$aarticle
001028714 3367_ $$2DataCite$$aOutput Types/Journal article
001028714 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1724399245_23126
001028714 3367_ $$2BibTeX$$aARTICLE
001028714 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001028714 3367_ $$00$$2EndNote$$aJournal Article
001028714 520__ $$aNeurotransmitter receptor densities are relevant for understanding the molecular architecture of brain regions. Quantitative in vitro receptor autoradiography, has been introduced to map neurotransmitter receptor distributions of brain areas. However, it is very time and cost-intensive, which makes it challenging to obtain whole-brain distributions. At the same time, high-throughput light microscopy and 3D reconstructions have enabled high-resolution brain maps capturing measures of cell density across the whole human brain. Aiming to bridge gaps in receptor measurements for building detailed whole-brain atlases, we study the feasibility of predicting realistic neurotransmitter density distributions from cell-body stainings. Specifically, we utilize conditional Generative Adversarial Networks (cGANs) to predict the density distributions of the M2 receptor of acetylcholine and the kainate receptor for glutamate in the macaque monkey’s primary visual (V1) and motor cortex (M1), based on light microscopic scans of cell-body stained sections. Our model is trained on corresponding patches from aligned consecutive sections that display cell-body and receptor distributions, ensuring a mapping between the two modalities. Evaluations of our cGANs, both qualitative and quantitative, show their capability to predict receptor densities from cell-body stained sections while maintaining cortical features such as laminar thickness and curvature. Our work underscores the feasibility of cross-modality image translation problems to address data gaps in multi-modal brain atlases.
001028714 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001028714 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001028714 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x2
001028714 536__ $$0G:(DE-Juel-1)E.40401.62$$aHelmholtz AI - Helmholtz Artificial Intelligence  Coordination Unit – Local Unit FZJ (E.40401.62)$$cE.40401.62$$x3
001028714 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
001028714 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x5
001028714 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001028714 7001_ $$0P:(DE-Juel1)170068$$aSchiffer, Christian$$b1$$ufzj
001028714 7001_ $$0P:(DE-Juel1)171512$$aNiu, Meiqi$$b2$$ufzj
001028714 7001_ $$0P:(DE-Juel1)131701$$aPalomero-Gallagher, Nicola$$b3$$ufzj
001028714 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b4$$ufzj
001028714 7001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b5$$ufzj
001028714 773__ $$0PERI:(DE-600)2099780-2$$a10.1007/s12021-024-09673-7$$p389-402$$tNeuroinformatics$$v22$$x1539-2791$$y2024
001028714 8564_ $$uhttps://juser.fz-juelich.de/record/1028714/files/s12021-024-09673-7-1.pdf$$yOpenAccess
001028714 8564_ $$uhttps://juser.fz-juelich.de/record/1028714/files/s12021-024-09673-7-1.gif?subformat=icon$$xicon$$yOpenAccess
001028714 8564_ $$uhttps://juser.fz-juelich.de/record/1028714/files/s12021-024-09673-7-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001028714 8564_ $$uhttps://juser.fz-juelich.de/record/1028714/files/s12021-024-09673-7-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001028714 8564_ $$uhttps://juser.fz-juelich.de/record/1028714/files/s12021-024-09673-7-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001028714 8767_ $$d2025-01-06$$eHybrid-OA$$jDEAL
001028714 909CO $$ooai:juser.fz-juelich.de:1028714$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001028714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186651$$aForschungszentrum Jülich$$b0$$kFZJ
001028714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)170068$$aForschungszentrum Jülich$$b1$$kFZJ
001028714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171512$$aForschungszentrum Jülich$$b2$$kFZJ
001028714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131701$$aForschungszentrum Jülich$$b3$$kFZJ
001028714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b4$$kFZJ
001028714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b5$$kFZJ
001028714 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001028714 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001028714 9141_ $$y2024
001028714 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001028714 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001028714 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001028714 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001028714 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-20
001028714 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-20
001028714 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001028714 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-20
001028714 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-20$$wger
001028714 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028714 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROINFORMATICS : 2022$$d2025-01-06
001028714 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
001028714 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
001028714 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
001028714 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-06
001028714 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
001028714 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-06
001028714 920__ $$lyes
001028714 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
001028714 9801_ $$aFullTexts
001028714 980__ $$ajournal
001028714 980__ $$aVDB
001028714 980__ $$aUNRESTRICTED
001028714 980__ $$aI:(DE-Juel1)INM-1-20090406
001028714 980__ $$aAPC