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Abstract
Neurotransmitter receptor densities are relevant for understanding the molecular architecture of brain regions. Quantitative 
in vitro receptor autoradiography, has been introduced to map neurotransmitter receptor distributions of brain areas. How-
ever, it is very time and cost-intensive, which makes it challenging to obtain whole-brain distributions. At the same time, 
high-throughput light microscopy and 3D reconstructions have enabled high-resolution brain maps capturing measures of 
cell density across the whole human brain. Aiming to bridge gaps in receptor measurements for building detailed whole-
brain atlases, we study the feasibility of predicting realistic neurotransmitter density distributions from cell-body stainings. 
Specifically, we utilize conditional Generative Adversarial Networks (cGANs) to predict the density distributions of the M2 
receptor of acetylcholine and the kainate receptor for glutamate in the macaque monkey’s primary visual (V1) and motor 
cortex (M1), based on light microscopic scans of cell-body stained sections. Our model is trained on corresponding patches 
from aligned consecutive sections that display cell-body and receptor distributions, ensuring a mapping between the two 
modalities. Evaluations of our cGANs, both qualitative and quantitative, show their capability to predict receptor densi-
ties from cell-body stained sections while maintaining cortical features such as laminar thickness and curvature. Our work 
underscores the feasibility of cross-modality image translation problems to address data gaps in multi-modal brain atlases.

Keywords  Generative adversarial networks · Neurotransmitter receptor · Autoradiography · Conditional learning ·  
Area-wise training

Introduction

Advances in imaging and analyzing large series of cell-
body stained sections and neurotransmitter receptor auto-
radiography have significantly facilitated the study of the 
brain’s cytoarchitectonic, fiber, and neurochemical organi-
zation (Amunts & Zilles, 2015; Palomero-Gallagher & 
Zilles, 2019; Caspers et al., 2013). These techniques cou-
pled with image analysis algorithms (Schleicher et al., 2005) 
capture unique attributes of different brain regions, such 
as laminar pattern of cortical areas, cortical thickness and 
neuronal density (Amunts & Zilles, 2015). In this context, 
brain atlases have been introduced to serve as standardized 
frameworks, enabling several modality measurements (e.g., 
cell-body stained and autoradiography) in a common refer-
ence space (Toga et al., 2006; Toga & Thompson, 1998; 
Amunts et al., 2020).

Whereas detailed cytoarchitectonic mapping of 248 
areas in the human brain together with brain-wide measures 
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of cell densities have already been published (Amunts 
et al., 2020), comprehensive measurements of neurotransmitter 
receptor densities by means of quantitative in vitro receptor 
autoradiography (Palomero-Gallagher & Zilles, 2018) are 
limited to a subset of 44 human cortical regions (Zilles & 
Palomero-Gallagher, 2017). A relatively higher amount of data 
is available for the macaque monkey brain, where the densities of 
14 different receptor types normalized by neuronal density have 
been for over 100 cortical areas (Froudist-Walsh et al., 2023). 
Receptors are specialized proteins or protein complexes that play 
a crucial role in the transfer of information between neurons and 
are thus pivotal for understanding synaptic interactions between 
neurons (Palomero-Gallagher & Zilles, 2019).

At the same time, previous research of our group has 
shown that the distribution of receptors in the cerebral cortex 
and subcortical nuclei is linked to the distribution of cells 
in a specific manner, and, as a general rule, the localization 
of borders of cytoarchitectonic areas coincide with those 
of receptorarchitectonics (e.g., Zilles & Amunts, 2015). 
However, the precise relationship of cyto- and receptor 
distributions is a topic of intensive research (e.g., Zachlod 
et al., 2023). Based on such research, our work leverages the 
more readily available and high-resolution cell-body stained 
sections to impute missing or damaged receptor autoradiog-
raphy sections.

Deep generative models, such as Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2014), excel 
at learning patterns in data distributions to generate new, 
similar samples. In the realm of medical imaging, Con-
ditional GANs (cGANs) (Mirza & Osindero, 2014) have 
shown particular promise (Yang et al., 2020; Armanious 
et al., 2020; Alotaibi, 2020; Singh & Raza, 2021). The con-
ditional aspect allows the models to generate images based 
on specific medical input aspects such as the input image 
modality. Such conditioning makes cGANs especially use-
ful for tasks like inter-modality image-to-image translation 
and medical image inpainting (Yang et al., 2020; Armanious 
et al., 2020). Despite this progress, the specific prediction 
of neurotransmitter receptor densities remains largely unex-
plored. The problem of missing data imputation for autoradi-
ography has recently been addressed by Funck et al. (2022), 
which employs linear interpolation to estimate missing auto-
radiographic sections based on 3D tissue reconstructions and 
spatial continuity assumptions.

Unlike this prior research, our study aims to leverage 
cGANs for predicting local neurotransmitter receptor 
densities from a different imaging modality, specifically 
cell-body stained images. In essence, we tackle a cross-
modality image translation problem to address data gaps 
in brain atlases. Since there are unavoidable variances in 
the data, such as slight morphological differences between 
sections, histological artifacts, and variations in radioac-
tive labeling intensity, we choose a generative model that 

predicts a distribution of possible outputs instead of a 
direct domain translation approach which assumes a 1:1 
correspondence between inputs and outputs.

We employ a cGAN architecture (Mirza & Osindero, 2014) 
for estimating M2 and kainate receptor densities in the 
macaque monkey’s primary visual (V1) and primary motor 
(M1) cortex using cell-body stained image patches as input. 
This is similar to style transfer problems in computer vision 
(Gatys et al., 2016; Zhao, 2020). The input and corresponding 
target patches are derived from closely situated tissue sections, 
which have undergone a process of nonlinear alignment.

As it is accepted thought that distinct brain regions 
exhibit unique receptor balances (Palomero-Gallagher 
et al., 2009, 2013), one would hypothesize that informing 
the cGANs of brain region information (e.g., brain region 
label) could be crucial. To test this assumption, we pro-
pose three cGAN variants with varying conditions: 1) a set 
of four specialist models, each trained for a specific recep-
tor and cortical area, 2) a set of two multi-area models, one 
per receptor type, trained on patches from both brain areas 
but explicitly conditioned by the brain area label and 3) a 
set of two multi-area models as in 2), but without explicit 
information about the brain area. Variant 3 can only rely 
on the information encoded in the input image patch for 
predicting the receptor distribution. For each model vari-
ant, we implement an identical architecture for both the 
generator and the discriminator. The generator and dis-
criminator use a Convolutional Neural Network (CNN) to 
predict receptor patches and differentiate target receptor 
patches from the predicted ones, respectively.

Our study makes three key contributions: 

1.	 We demonstrate the general ability of deep generative 
networks to predict realistic receptor distributions from 
cell-body stained input patches.

2.	 We show that the image patches generated by the models 
preserve fundamental attributes of local cortical mor-
phology, such as cortical thickness and curvature, as 
encoded in the cell-body stained input patch.

3.	 We show that the generated density distributions for the 
visual area V1 and motor area M1 areas exhibit a realis-
tic appearance without explicitly conditioning the model 
on specific regions of the macaque brain.

Materials and Methods

Multimodal Image Data of the Macaque Monkey Brain

In this study, we examined a total of 45 sections from the 
left hemisphere of a single macaque monkey brain, with 15 
sections dedicated to each of three distinct measurements: 
autoradiography for cholinergic muscarinic ( M2 ) receptors, 
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autoradiography for glutamatergic (kainate) receptors, and 
Nissl staining for cell body visualization. Of these, 10 sec-
tions from each measurement type were used to predict 
patches from the visual cortex (area V1), and the remain-
ing 5 sections from each were used to predict patches from 
the motor cortex (area M1). These images were previously 
used to characterize the macaque monkey primary visual 
cortex (V1) (Rapan et al., 2022) as well as the primary motor 
cortex (M1) (Rapan et al., 2021). In short, unfixed shock 
frozen macaque monkey brains were serially sectioned in 
the coronal plane. The sectioning protocol was such that 
two consecutive sections processed for a given modality 
(i.e., a cell body staining or a specific receptor type) were 
separated by approximately 1mm in the brain using a light 
microscope (Axioplan 2 imaging, Zeiss, Germany) equipped 
with KS400 and Axiovision (version 4) systems. The resolu-
tion of the cell-body stained scans was 1�m∕pixel.

We used images of autoradiographs encoding the 
distribution patterns of the M2 and kainate receptors in areas 
V1 and M1. The experimental procedure is described in 
detail in the publications in which the receptors in these two 
areas were identified and characterized (Rapan et al., 2021, 
2022). Brain sections were incubated with radiolabelled 
ligands selectively targeting a specific receptor type. 
Radiolabelled sections were then co-exposed with standards 
of known concentrations of radioactivity against tritium-
sensitive films. The ensuing autoradiographs, which provide 
a visual representation of the receptor distribution, were 

digitized using a Charge-Coupled Device (CCD) camera 
(Axiocam MRm, Zeiss, Germany) and Axiovision software 
(Zeiss, Germany), thus enabling their densitometric analysis 
(Palomero-Gallagher and Zilles 2018).

The obtained 8-bit images have an in-plane resolution 
of 20�m (Rapan et al., 2021, 2022). The grey values of the 
co-exposed standards are used to compute a regression curve 
with which a linear relationship between receptor densities 
(in fmol/mg protein) and the grey value in each pixel of 
a digitized autoradiograph can be established (Palomero-
Gallagher & Zilles,  2018). These linearized images 
constitute the basis for the present analysis. Figure 1 provides 
a visual representation: Panel (A) displays a schematic 
of the 15 sections analyzed in this study, comprising 10 
sections containing area V1 and 5 sections with area M1, 
corresponding to each receptor type. Panels (B) and (C) 
respectively showcase an overlay of cell body-stained 
histology and contrast-enhanced autoradiography sections.

Extraction of Corresponding Cortical Image Patches

To train the generative models, we sample N corre-
sponding pairs of image patches from both modalities 
{(X

cyto
n ,Xar

n
)}N

n=1
 cell-body stained and autoradiography 

in the cortical areas V1 and M1. The correspondence is 
established by image registration between an autoradiogra-
phy section to its neighboring cell-body stained reference 
section (Fig. 1).

A

…

** +++
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PosteriorAnterior
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+

Reference cell-body stained section
Corresponding receptor autoradiography
section

B

Reference cell-body stained 
section

Autoradiography section 

C

Fig. 1   Overview of the image datasets of different modalities. A A 
schematic representation of the brain showing the locations of sec-
tions used in the study. B Example of a cell-body stained section from 

the visual cortex. C Example of an adjacent autoradiography section. 
Between each two adjacent cell-body stained sections, there are 20 
sections used for different receptor autoradiographies
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Multimodal Alignment of Neighboring Sections

The autoradiography sections are in general deformed in a 
nonlinear fashion relative to their corresponding cell-body 
stained reference sections. This is a typical, inevitable con-
sequence of the histological processing (Fig. 1). Thus we 
perform a nonlinear alignment as a prerequisite for sampling 
corresponding patches. This is performed using the work-
flow illustrated Fig. 2(A).

First, reference sections are downscaled from 1�m to 
5�m to match the resolution of the autoradiography section. 
Second, we identify an average of 42 anatomical landmarks 
per image pair, selecting them based on distinct anatomical 
features such as the center of specific sulci and gyri. This 
selection of landmark locations simplifies the validation of 
registration quality through visual inspection. Ten of these 
landmarks are randomly reserved for validation, while the 
remaining landmarks guide the multi-modal image registra-
tion. Third, registration is performed using the bUnwarpJ 
plugin in Fiji (v. 1.54f) (Arganda-Carreras et al., 2006), 
which applies a B-spline-based nonlinear transformation 
F to the autoradiography section (source image) to match 
the cell-body stained reference section (target image). The 
bUnwarpJ plugin uses a transformation that minimizes the 
Euclidean distances between the landmark pairs as well as 
the dissimilarity of the images as measured by the sum of 
squared differences. We set the relative weight between 
landmarks and similarity to � = 0.3 . Exact parameter set-
tings of the plugin are provided in the supplementary materi-
als. Finally, we apply the resulting inverse deformation field 
D−1 to the held-back landmarks to visually verify the result.

Defining Sampling Positions for Cortical Patches

The strategy for sampling cortical image patches from the 
annotations is illustrated in Fig. 2(B). We first identify the 
midline of the cortex in the target areas by fitting a cubic 
spline to manually-placed control points, spaced at an aver-
age distance of 8.6mm based on empirical testing that indi-
cated optimal curve fitting throughout the selected control 
points. Next, we position square patches of size 2 × 2mm 
at intervals of 0.2mm along this midline. The interval size 
of 0.2mm was selected to ensure adequate sampling while 
minimizing redundancy. At each specified position (x, y) , 
we sample nine shifted patches with offsets defined by 
{(x + dx, y + dy),∀dx, dy ∈ {−0.5, 0, 0.5}} . This yields an  
overlap rate of approximately 90% which is chosen to maxi-
mize the number of training patches. The obtained patches 
are then mapped to the corresponding positions in the cell-
body stained sections using F−1 and D−1 . In both modali-
ties, we place square patches of 2mm side length, using 
four corner points to define their boundaries. Any patches 

outside the sections or with tissue damage are manually 
excluded.

cGAN‑Based Model for Autoradiography Prediction

We use three cGAN variants Fig. 3, each with different 
conditioning schemes for receptor prediction in macaque 
monkey brain regions V1 and M1. All models use the same 
architecture for the generator and the discriminator.

Model Architecture  The generator G ∶ (Xcyto, Z) → X̂ar pro-
duces samples X̂ar conditioned on multi-channel input ten-
sors (Xcyto, Z) . The input tensor is composed of cell-body 
stained patches Xcyto with a resolution of (1�m) and spatial 
dimensions (2048 × 2048) pixels, concatenated with a white 
noise tensor Z serving as a random source. Additional input 
channels may be added for conditioning, depending on the 
model variant. Rather than merely reducing the resolution, 
the network aims to learn to map the input cell-body stained 
image patches to the output autoradiography patch distribu-
tion. The architecture comprises two main components: a 
backbone and a head, as shown in Fig. 4. The backbone con-
sists of four convolutional layers that transform Xcyto into a 
(64 × 128 × 128) feature map and a head. The head employs 
an adapted U-Net architecture (Ronneberger et al., 2015) 
to generate samples X̂ar with dimensions (128 × 128) and 
a resolution of (5�m) . All convolutional layers use Batch-
Instance normalization (Nam & Kim, 2018) and ReLU 
activation, except for the final layer, which employs a tanh 
activation function. Specific layer parameters are detailed 
in Fig. 4.

The discriminator (D) distinguishes predicted patches 
X̂ar from their corresponding targets Xar . The architec-
ture consists of four convolutional layers with kernel size 
4, stride 2, and padding 1, followed by a terminal fully 
connected layer. Each convolutional layer is followed by 
a Batch Normalization layer and a LeakyReLU activa-
tion function with slope � = 0.2 . Detailed parameters are 
given in Fig. 4.

Training and Loss Functions  The models are trained using 
the following loss function:

where � = 0.5 balances the contributions of the adversarial 
and L1 losses. The adversarial loss is:

(1)L(G,D) = LGAN(G,D) + �L1(G)

(2)

LGAN(G,D) =
1

N

N
∑

n=1

�(Xar
n
∼X ar)[logD(X

ar
n
)]

+ �(Z∼N(0,1),X
cyto
n ∼X cyto)[log(1 − D(G(Z,Xcyto

n
)))]
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The L1 loss guides the learning process to produce outputs 
that are content-consistent with the inputs:

Unconditional Multi‑Area GAN  Previous research has 
shown a region-specific relationship between receptor 

(3)

L1(G) =
1

N

N
�

n=1

�(Xar
n
∼Xar ,Z∼N(0,1),X

cyto
n ∼Xcyto)[‖X

ar
n
− G(Z,Xcyto

n
)‖1]

densities and cytoarchitecture (e.g., Palomero-Gallagher 
et al., 2013; Zilles et al., 2002; Zilles & Amunts, 2015). 
As such, one would assume that the Unconditional multi-
area GAN would be the suitable model for this study. Here, 
we would like to investigate the impact of area-specific 
conditioning. We train a Conditional single-area GAN on 
both V1 and M1 areas for each receptor. The architecture 
and loss functions remain unchanged from the Conditional 
single-area GAN.

Fig. 2   Workflow for cell-body 
stained and receptor autora-
diography pre-processing and 
patch extraction. Two stages: 
A Registration: Using Fiji’s 
bUnwarpJ with landmark align-
ment, we place an average of 42 
landmarks per image (A left). 
The strategy for placing points 
was to distribute them well 
across the cortex of the section 
and close to clearly visible land-
marks such as the tip of a gyrus 
or the deepest point of a sulcus. 
The deformation is illustrated as 
a vector field (A right), where 
arrows denote the shift of a 
pixel in the moving image (cell-
body stained section) to its tar-
get position in the fixed image 
(autoradiography section). Note 
that the figure shows the defor-
mation vectors at a reduced 
resolution for illustration, while 
the actual deformation field 
has the same dimensions and 
resolution as the autoradiogra-
phy section. B Patch Selection: 
patch selection: It involves 
curve fitting along manually 
identified cortical points, with 
equidistant points chosen as 
central patch locations. Around 
each, eight adjacent points are 
determined with a 0.5 mm shift. 
These patch center coordinates 
are mapped to stained sections 
via inverse deformation, adjust-
ing cropping for resolution 
discrepancies

Autoradiography section
(fixed image)

A) Registration

Autoradiography section with cortical area 
boundaries annotated by an expert as well as 

manually annotated points on the cortical mid-surface 

B) Patch selection

Patch

Sampling patch 
centre points in
autoradiography

modality

Patch 
centre-point

Cortical centre-
line for the

annotated area 

Patch centre-
point shifting 

periphery

. .
.

Manually placed 
point on the cortex

centre

Area
boarder

Cell-body stained section
(moving image)

Medial
Lateral

Ventral

Deformation field ( ) resulting from 
registration using Fiji bUnwarpJ

plugin [27]

Setting corresponding landmarks in both modalities 

Dorsal

MedialLateral

Ventral

Transfer patch
centre points
to cell-body

stained
coordinate

space.
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Fig. 3   Variants of cGAN train-
ing pipelines. The figure illus-
trates three cGAN training mod-
els. A shows the Conditional 
single-area GAN with inputs 
of single-area, single-receptor 
cell-body stained patches and 
noise. B presents a Conditional 
multi-area GAN that takes 
multi-area patches for one 
receptor, noise, and a condition 
tensor C . For the conditional 
multi-area GAN, both generator 
and discriminator have an extra 
input channel for the area condi-
tion. C depicts an Unconditional 
multi-area GAN, similar to the 
Conditional single-area GAN 
but with multi-area for a given 
receptor inputs

Fig. 4   Architecture of the 
generator and the discriminator 
for the single-area GAN. The 
generator is composed of four 
convolutional layers aiming 
to reduce the size of the input 
cell-body stained histological 
patches to match the spatial 
size of the receptor patches. 
These four layers are followed 
by a UNet architecture. The dis-
criminator is composed of five 
convolutional layers followed by 
a fully connected layer. Details 
of each convolutional layer 
could be seen in the legend
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Evaluation Metrics

We evaluate our cGANs using five different metrics.
Mean Absolute Error (MAE; Rajkumar and Malathi 

(2016)) measures the pixel discrepancies between z-score 
normalized patch pairs Xar

n
 and X̂ar

n
 . The mean and standard 

deviation used to compute the z-scores for each patch are 
only computed for Xar and then applied to X̂ar.

Peak Signal-to-Noise Ratio (PSNR; Hore and Ziou 
(2010)) assesses the clarity of X̂ar

n
 in comparison to Xar

n
 . It 

is calculated as:

where MAXP refers to the maximum possible pixel value 
which is 1 in our case.

Structural Similarity Index (SSIM; Ndajah et al. (2010)) 
is measured between Xar

n
 and X̂ar

n
 . It is defined as:

where Xar
n

 , X̂ar
n

 are the mean pixel intensities; �2
Xar
n

 , 𝜎2

X̂ar
n

 are 

variances; 𝜎Xar
n
X̂ar
n
 is standard deviation; c1 and c2 are stability 

constants.
The Fréchet Inception Distance (FID) (Yu et al., 2021) 

measures the similarity of feature distributions between Xar
n

 
and X̂ar

n
 . This is achieved by using standard features from 

the Inception V3 network (Szegedy et al., 2016). The FID is 
calculated as follows:

Experimental Setup

Training and testing splits for each cGAN model are out-
lined in Fig. 5. All models are trained for 250 epochs using 
Binary Cross Entropy loss and the Adam optimizer (Kingma 

(4)PSNR(Xar
n
, X̂ar

n
) = 20 log10

⎛

⎜

⎜

⎜

⎝

MAXP
�

MSE(Xar
n
, X̂ar

n
)

⎞

⎟

⎟

⎟

⎠

(5)SSIM(Xar
n
, X̂ar

n
) =

(2Xar
n
X̂ar
n
+ c1)(2𝜎Xar

n
X̂ar
n
+ c2)

(Xar
n

2
+ X̂ar

n

2

+ c1)(𝜎
2
Xar
n

+ 𝜎2

X̂ar
n

+ c2)

(6)
FID(Xar

n
, X̂ar

n
) = ||𝜇Xar

n
− 𝜇X̂ar

n
||

2 + Tr(ΣXar
n
+ ΣX̂ar

n
− 2(ΣXar

n
ΣX̂ar

n
)1∕2)

& Ba, 2014), with a learning rate of 0.001. Betas b1 and b2 
are set at 0.5 and 0.99, respectively. Gradient clipping is 
applied for training stability (Pascanu et al., 2013). Compu-
tations are performed on the JURECA DC supercomputer 
(Krause & Thörnig, 2018), utilizing four nodes each with 
four Nvidia A100 GPUs.

Results

We evaluate the autoradiography patches generated by the 
proposed GAN models from quantitative and qualitative per-
spectives. The focus of our experiments is to verify that the 
generated distributions are representative for a given recep-
tor and brain region, and that they are aligned with the corti-
cal structure defined by the cell-body stained input patch.

Quantitative Results

Figure 6 presents mean values, standard deviations, and the 
least favorable patch scores-which are represented by either 
the minimum or maximum value, depending on the metric- 
for each of the metrics introduced in “Evaluation Metrics” 
section across four experiments that vary by brain region and 
receptor. Performance enhancement is signified by lower 
values for the MAE and FID scores, and by higher values 
for SSIM and PSNR

PSNR and SSIM scores are very similar for all three model 
variants (Fig. 6) in all studied brain regions. The z-score normal-
ized MAE scores for area V1 exhibit an error margin equivalent 
to 80% of 1 standard deviation from the target receptor patches, 
while for area M1, the error margin closely aligns with 1 standard 
deviation. SSIM values for all models and receptor-area pairings 
fall within the top 13% of the SSIM scale (-1 to 1). FID scores 
vary by brain area. Models for area V1 have an average FID of 
504.06, lower than those for area M1, which averages at 570.74.

Across all model variants, the reconstruction error as 
measured by MAE is significantly smaller for patches 
from the visual cortex compared to patches in the motor 
region. Additionally, FID and MAE show different results 
for patches with M2 receptor distributions in area M1 
compared to other area-receptor pairings. For example, 
while the unconditional multi-area GAN performs worst 

Fig. 5   A and B show sec-
tions used by the conditional 
single-area GAN for training 
and testing for area V1 and M1, 
respectively, for both M

2
 , and 

Kainate receptors. C shows 
sections used by the Conditional 
and Unconditional multi-area 
GANs for both areas receptors

110

A
Dorsal

PosteriorAnterior

Ventral

Training section
Testing section

Area: V1
Receptors: and Kainate
Models: Conditional single-area
GAN

B

2834 2834

C

110

Area: M1
Receptors: and Kainate
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GAN
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Receptors: and Kainate
Models:
- Conditional multi-area GAN
- Unconditional multi-area GAN
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here according to MAE, it performs best in terms of FID. 
Such contradictory results between FID and MAE are not 
observed in other experiments.

Qualitative Evaluation

For each model, we inpaint generated patches at their cor-
responding target positions in the autoradiography sections 
to visualize the consistency of generated receptor density 
distributions with the underyling cortical morphology.  
Figures 7 and 8 display aggregated patches for both recep-
tors in areas V1 and M1, respectively. In order to maximize 
the visibility of receptor density pixel variations in the afore-
mentioned figures, the inpainted patches were subjected to 
min-max contrast enhancement. This process adjusted each 
section’s pixel intensities to cover the entire intensity range 
observed in the section.

Figures 7 and 8 show that the models replicate target 
cortical orientations and curvatures across all receptor-area 
pairings. For instance, all model predictions for area V1 
show that predicted receptor densities, for both receptors, 
are lower in the central layers of the cortex and increase 
towards the pial surface and grey/white matter boundary 

which conforms to the target receptor density in V1. For 
area M1, all models show higher kainate receptor density 
at the cortical edges, matching target densities. In contrast, 
with receptor M2 , densities are higher in the cortex center 
and lower at the edges. Aparently, the single-area GAN and 
conditional multi-area GAN preserve the contrast level quite 
closely, while the unconditional multi-area GAN displays a 
slightly lower contrast between the cortex center and edges 
in the shown example.

The predicted patches accurately reflect the thickness and 
laminar patterns of the target receptor patches. Nonetheless, 
in area V1, receptor M2 patches exhibit a 10-pixel spatial 
shift, and in area M1, an 8-pixel spatial shift is observed 
across receptors. These spatial shifts, however, do not visu-
ally seem to impact the cortical thickness.

Additionally, patches from the unconditional multi-area 
GAN in area V1 display higher contrast than those from other 
models (see Fig. 7 panels (D)). Despite this higher contrast, 
visual inspection shows no significant alteration in the recep-
tor density levels or in the laminar organization. In area M1, 
unconditional multi-area GAN does not replicate accurately 
the laminar structure of receptor M2 despite scoring the highest 
SSIM and lowest FID values compared to the other models.

Fig. 6   Metrics for the three different model variants across four 
experiments with test patches for different cortical brain areas (V1, 
M1) and receptors ( M

2
 , kainate). Error bars refer to standard devia-

tion, arrowhead markers indicate worst scores measured among all 
test patches. Left column: Smaller values imply better scores. Right 
column: Larger values imply better scores
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Fig. 7   Comparison of the 
reconstructed M

2
 and kainate 

receptor measures in area V1 
across cGAN models. The fig-
ure presents mix-max contrast-
enhanced reconstructions (for 
better readability) of M

2
 and 

kainate receptor measures in 
area V1 using different trained 
cGANs. For each neurotrans-
mitter receptor, the top section 
portrays a straight cortical 
morphology, while the bottom 
shows a sulcus
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Discussion

In this study, we applied three cGANs to predict M2 as well 
as kainate distributions for areas V1 and M1 in the macaque 
monkey brain. We evaluated these cGANs both quantita-
tively using MAE, PSNR, FID, and SSIM, and qualitatively 
using visual assessment.

Our results demonstrate the capability of conditional 
GANs to generate realistic neurotransmitter receptor distri-
butions as captured in autoradiography, as shown by MAE 
values ranging between 0.8 and 1.2 for all studied GAN 
model variants (Fig. 6). Such range is considered relatively 
low due to the noisy nature of the target autoradiography 

(see Fig. 1). As such, unlike area V1 (see Fig. 7), where 
patches show a well-differentiated laminar structure with 
sharp differences between the cortical layers, patches taken 
from area M1 display less pronounced laminar structure 
and are more noisy (see Fig. 8). This justifies that the aver-
age MAE across all models is higher for area M1 compared 
to area V1. Furthermore, the high range SSIM scores (see 
“Quantitative Results” section) highlights the models’ effec-
tiveness in capturing textural similarities.

A key aspect of our models is their ability to adequately rep-
licate the cortical morphology of target receptor patches. All 
model variants receive a cortical image patch from a nearby 
cell-body stained section as an input, which they use to define 
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Fig. 8   Comparison of the reconstructed kainate and M
2
 receptor meas-

ures in area M1 across cGAN models. The figure presents min-max 
contrast-enhanced reconstructions (for better readability) of kainate 

and M
2
 receptor measures in area V1 using different trained cGANs. 

The top section portrays the reconstruction of the M
2
 receptor, while 

the bottom shows the reconstruction of the kainate receptor
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the underlying cortical morphology (See Fig. 9). The overall 
morphology, such as curvature and laminar layer structure, are 
adequately preserved in the generated patches (Figs. 7 and 8).

However, generated patches occasionally suffer from sys-
tematic shifts (see Fig. 7 top panel, and Fig. 8 both panels), 
we expect to arise from remaining registration inaccuracies 
in the pairs of training patches. While there exist several 
automatic registration methods on scanned brain section data 
(Schubert et al., 2016; Modersitzki et al., 2001), the differ-
ence in resolution and pixel intensities makes these methods 
challenging to apply. Therefore, we resorted to manual reg-
istration which itself presented significant challenges due to 
the anatomical changes occurring between adjacent sections 
as well as the difference in resolution (i.e., a 1-pixel shift in 
the autoradiography results in a 20-pixel shift in the cell-
body stained modality). Despite manual quality assessments 
and adjustments of the registration, there still exist a few 
errors which will be the subject of improvement in future 
studies. These errors could be also observed in the results 
in Fig. 6 showing that MAE value’s range is higher for pre-
dictions on area M1, compared to area V1. On the other 
hand, the observed variation in FID scores among receptors, 
particularly for receptor M2 and in area M1, can be ascribed 
to the FID score computation method. This method utilizes 
a pre-trained Inception V3 network for feature extraction to 

quantify differences between predicted and target patches. 
Given that the Inception V3 network might be optimized 
for certain shapes and/or pixel intensities, it may inherently 
favor specific models or area-receptor pairings.

Besides the cortical morphology, a major challenge 
for image generation is the complex relationship between 
neurotransmitter densities and cytoarchitecture. The mod-
els cannot generally assume that a given distribution 
of cell bodies, as captured by the input image patches, 
implies a clearly defined neurotransmitter density distri-
bution. Indeed, there is no consistent correlation between 
receptor densities and cell packing densities; further-
more, differences in receptor densities across layers do 
not trivially align with or predict layer-specific differences 
in cell packing densities (Zilles et  al., 2004; Palomero- 
Gallagher & Zilles, 2019) (i.e., although it is true that most 
receptors for classical neurotransmitters are present at higher 
densities in the superficial than in the deeper cortical layers 
(Zilles & Palomero-Gallagher, 2017), it could also be shown 
that the cortical depths at which the borders between receptor 
architectonically defined layers occur within a given brain 
region do not coincide with those between the cytoarchitec-
tonically identified layers of that area Palomero-Gallagher 
and Zilles (2019)). Furthermore, for any area throughout the 
cortical ribbon, a given layer can contain the highest density 

Fig. 9   Illustration of laminar differences between area V1 and area 
M1. In contrast to the motor cortex, V1 exhibits a more distinct lami-
nar structure; it shows a broad layer IV, where input arrives from the 
retina via the lateral geniculate body. The motor cortex is character-
ized by the presence of large pyramidal cells. Moreover, the deline-

ation between the motor cortex and the white matter is less apparent 
due to reduced density in the lower layers in M1 as compared to V1. 
Note that the cell-body stained section shows a bubble artifact in the 
upper left part, which is located outside the cortical regions used in 
this study
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of one receptor type and the lowest of another type in that 
given area, and this not only holds true for isocortical but also 
for allocortical areas. E.g., Throughout the isocortex layer 
I contains one of the highest 5-HT1A receptor densities, 
but one of the lowest kainate receptor concentrations Zilles 
and Palomero-Gallagher (2017). Within the hippocampus, a 
prominent component of the allocortex, the pyramidal layer 
of the CA1-CA3 regions contains significantly higher AMPA 
and lower NMDA receptor densities than the adjacent layers 
(Palomero-Gallagher et al., 2003). We, therefore, expected a 
need to inform models about the brain region of each input 
patch and therefore chose three model variants for our experi-
ments that differ substantially in the way they are informed 
about the brain region: by explicit conditioning, by separate 
region-specific training, and without conditioning. Contrary 
to the above mentioned-expectation, the unconditional multi-
area GAN performed comparably to the remaining cGAN 
models in terms of replicating key visual cortical attributes 
(i.e., cortical thickness laminar definition) across various 
receptors and brain areas without specific brain area con-
ditioning. This observation is supported by the close metric 
values and visual receptor quality shown in Figs. 7 and 8. A 
possible explanation for this behavior is that the networks 
have learned to derive distinct characteristics of cytoarchi-
tecture from the input patches, which provides a sufficient 
prior and makes explicit conditioning or training unneces-
sary. However, we noticed that the unconditional multi-area 
GAN tends to preserve contrast slightly less accurately than 
the other models. A possible reason for this observation is 
the use of uncalibrated autoradiography scans, potentially 
making it difficult for the unconditional multi-area GAN to 
distinguish intensity balances in the different areas precisely. 
In future work, we aim to use calibrated autoradiography 
scans to avoid similar issues.

We want to stress that at the current stage of research, 
we do not consider the images generated by deep generative 
models as suitable to replace real histological observations. 
Generative models require careful interpretation and valida-
tion of their outputs, since their capacity allows them to add 
and remove information from the signal in complex ways, 
and the evaluation and interpretation of deep generative 
models is an active field of research. However, the proposed 
models provide potential for powerful data interpolation and 
imputation (Funck et al., 2022), and improved workflows for 
whole-brain 3D reconstruction and atlasing Clearly, interpo-
lated data should always be clearly labeled and documented 
to enable proper interpretation and validation of derived 
data analysis results. Another important application of the 
proposed generative models is to help discover cross-modal 
relationships. For example, if a model can learn to predict 
one modality from another reliably, it provides indication 

for an underlying relationship that merits further investiga-
tion. This could help in the formulation of novel anatomical 
hypotheses and motivate the progression towards explain-
able AI models.

Conclusion

We have demonstrated the application of cGANs for esti-
mating neurotransmitter receptor densities ( M2 and kainate) 
in the macaque monkey’s primary visual (V1) and motor 
cortex (M1) from cell-body stained histology. The models 
were trained on aligned consecutive sections displaying 
cell-body stains and receptor distributions, effectively map-
ping between these two modalities. Qualitative and quan-
titative evaluations of our models underscore their ability 
to preserve cortical features such as laminar thickness and 
curvature, demonstrating the accuracy and reliability of the 
predicted receptor densities. This would allow the predic-
tion of more region-based autoradiography data which could 
be used to refine the existing findings in brain receptors. 
Our models could also be useful to study the relationships 
between cytoarchitecture and receptor densities by attempt-
ing to analyze the feature maps and provide explainability 
for the prediction process. Additionally, our cGANs mark 
the first step towards receptor distribution prediction in the 
whole given brain area using only cell-body stained sections 
taken from an existent cytoarchitecture atlas.
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