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A known scalability bottleneck of the parallel 3D FFT is its use of all-to-all communications. Here, we present
S3DFT, a library that circumvents this by using point-to-point communication — albeit at a higher arithmetic
complexity. This approach exploits three variants of Cannon’s algorithm with adaptations for block tensor-matrix
multiplications. We demonstrate S3DFT’s efficient use of hardware resources, and its scaling using up to 16,464
cores of the JUWELS Cluster. However, in a comparison with well-established 3D FFT libraries, its parallel
efficiency and performance were found to fall behind. A detailed analysis identifies the cause in two of its
component algorithms, which scale poorly owing to how their communication patterns are mapped in subsets

MPI of the fat tree topology. This result exposes a potential drawback of running block-wise parallel algorithms on

Performance analysis

Roofline model of processing elements.

systems with fat tree networks caused by increased communication latencies along specific directions of the mesh

1. Introduction and motivation

Many fields of numerical simulation such as astrophysics, plasma
physics and molecular dynamics (MD) involve computing the pair-
wise long-range interactions between the physical system’s constituents
[1-3]. Some examples are gravitational forces, Van der Waals and elec-
trostatic interactions. This computation is time-consuming and often
restricts sizes and time scales. For example, in atomistic MD simulations
of bio-physical systems, the sizes to be simulated can be very large —
ranging up to 10° [4] particles — and computing the long-range interac-
tions is typically responsible for 90% of the total run-time. This problem
is particularly relevant in the field of quantum mechanics-based MD
simulations [5]. To limit the computational costs and improve scaling,
techniques derived from the Ewald summation method are extensively
used, which utilize the three dimensional Discrete Fourier Transform

* Corresponding author.

(3D DFT) - both to ensure the convergence of the calculation and to
gain speed-up [6-8]. Therefore, improving the scalability of the parallel
3D DFT is very desirable as it will extend the scope of these simula-
tions — enabling the study of larger and more complex systems and for
longer times — exploiting modern, massively parallel computer architec-
tures [9].

The DFT operation is typically applied using any of the set of al-
gorithms known collectively under the name of Fast Fourier Transform
(FFT) [10]. Specifically, variants of the Cooley-Tukey FFT algorithm
are the most commonly employed. They break the original DFT prob-
lem down into a tree of smaller DFT problems, which are sometimes
solved recursively and more often non-recursively [11]. This results in
a drastic reduction of arithmetic complexity from O(N?) of the naive al-
gorithm, down to O(Nlog, N). Similarly, the 3D FFT operation reduces
the arithmetic complexity from O(N*) to O(N? log, N). Depending on
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the size of the problem, this may considerably reduce the run-time of
computer applications. However, in the context of distributed-memory
computers, the run-time of the 3D FFT is dominated by communication,
which can make up to 80-95% of it [12,13], and so there is still interest
in improving the scaling performance of the 3D FFT algorithm [12-15].

Reports suggest that the high fraction of communication time of
the 3D FFT is due to its unavoidable use of all-to-all communica-
tions [12,16]. Further, on the Fugaku supercomputer, it has been shown
that 3D FFT algorithms that make use of point-to-point communication
scale better than those that make use of all-to-all communication [13].
This indicates that one may profit from 3D DFT algorithms that achieve
better scalability by means of alternative communication patterns.

In order to achieve better scalability by swapping all-to-all for point-
to-point communication, in 2015, Sedukhin et al. studied the scalability
of an alternative algorithm that makes use of point-to-point communica-
tion to compute the 3D DFT, albeit at the significantly higher arithmetic
complexity of O(N*) as compared to that of O(N3logN) of the 3D FFT
algorithm. Their work implemented a point-to-point orbital algorithm
that targeted the IBM Blue Gene/Q computer, which is based on a
5D torus topology. Their benchmarking revealed worse overall perfor-
mance of their implementation compared to that of the standard 3D FFT
implementations of the time. However, the authors noted that, for a sin-
gle node, their implementation of the core computational operation of
the algorithm - the tensor-matrix multiplication — achieved 20% of the
corresponding peak performance, and concluded with the speculation
that a more efficient implementation could outperform the 3D FFT al-
gorithm for very large node counts [17]. Since then, the computational
power of CPUs has grown more than the speed of the interconnects be-
tween the nodes [18], a fact which leans in favour of this alternative
approach.

Inspired by the work of Ref. [17], we have designed and imple-
mented a new 3D DFT algorithm that makes use of point-to-point com-
munication, and benchmarked it on the JUWELS Cluster [19] at the
Jiilich Supercomputing Center. This cluster is based on the fat tree net-
work topology, which is one of the most commonly adopted network
topologies nowadays. Our algorithm — which we refer to as 3D DFT by
block tensor-matrix multiplication — is based on specially adapted vari-
ants of Cannon’s algorithm, which, in its original form, is an efficient
distributed-memory matrix-matrix multiplication algorithm suited for
square matrices [20-22]. We chose this algorithm because of its scal-
ability [21] and the simplicity of its implementation. Our adaptations
not only make it possible to use tensor operands, but also enable the uti-
lization of the well-known strategy of overlapping communication and
computation — by dedicating a thread to communication with the help
of a custom work-sharing function for OpenMP-based multithreading —
in an effort to hide the latency of communication. Further, by carefully
applying only static scheduling, which almost entirely eliminates the
use of processor interconnects in a non-uniform memory access (NUMA)
setup, our implementation enables the efficient use of multithreading
across NUMA domains. This avoids the use of distributed-memory paral-
lelism within a shared-memory space, thereby increasing the efficiency
of hardware resource utilization on the single node level.

We have implemented our algorithm as a C++ library that we
named S3DFT and compared it with two competitive FFT implementa-
tions, namely, the FFTW3 library [11] and the Intel Math Kernel Library
(MKL). This choice is motivated by the fact that these libraries are well-
established, high-performing and arguably the most used worldwide in
various applications.? The results demonstrate strong scaling of S3SDFT
up to the maximum number of 16,464 cores considered. However, we
found its overall performance to fall behind those of its competitors.

2 The Intel Math Kernel Library is the fastest and most-used math library for
Intel-based systems (data from Evans Data Software Developer survey, 2022).
The reference publication discussing the implementation of FFTW3 [11] has
more than 3,200 citations in papers and more than 40 citations in patents.
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A detailed analysis uncovered the source of the problem in two of
its distributed-memory components that scale poorly owing to how
their intrinsic communication patterns are mapped in subsets of the
fat tree topology. Algorithmic variants of these components designed to
overcome this problem significantly improved the strong-scaling perfor-
mance of S3DFT, but did not lead to overall increase of its performance
due to the overhead of the additional global data transpositions re-
quired.
Summarizing the main contributions of our work:

We have designed and implemented a 3D DFT algorithm that uses
only point-to-point communication.

In this endeavour, we have designed, implemented and analyzed
the performance of variants of Cannon’s algorithm with adapta-
tions that extend its use for block tensor-matrix multiplications on
volumetrically decomposed domains.

We have exposed a potential drawback when running block-wise
parallel algorithms on machines with a fat tree network.

We have compared the strong scaling performance of S3DFT with
that of FFTW3 and Intel MKL on the pre-exascale JUWELS Cluster
at the Jiilich Supercomputing Center. This represents useful infor-
mation for researchers who routinely use these popular 3D FFT
libraries on similar machines.

The paper is organized as follows. Section 2 introduces the notation
used throughout the paper, reviews key concepts needed to describe
our 3D DFT algorithm, and describes the modeling of the overlapping
of the communication and the computation used to select the combi-
nation of block size and node count in the performance analysis of
the distributed-memory block tensor-matrix multiplication algorithm.
Section 3 outlines the details of the actual implementation of S3DFT.
Section 4 provides the specifications of the JUWELS Cluster that was
used for the benchmarking. Section 5 presents a performance analysis
of the core functions and provides insights into the overall performance
of the algorithm. Finally, sections 6 and 7 discuss the results of com-
parisons of S3DFT with FFTW3 and Intel MKL and put forward our
conclusions.

2. Theory
2.1. 3D DFT by block tensor-matrix multiplication

The DFT for a sequence of 3D operand data x(/,m,n) € C can be
written as [17]°

N-IN-1IN-1
Wi j k=3 % Y xm ) e(l,i) e(m, j) e(n,k) ¢))

n=0 m=0 /=0

where the coefficients
. 2@
c(ny,ny) = exp(—i F"I"Z) VO<n,n<N

define the DFT matrix C € CV*N, Making use of the formalism of Kolda
et al. [23], the operand data x(/,m,n) can be viewed as an order-3
tensor* X € CN*NXN existing in a 3D space defined by orthogonal di-
rections 1,2, 3, with the data x(/, m,n) arranged as a cubic mesh. Now,
we introduce a right product of X and a matrix A € CV*V in terms of
their mode-3 product as

Zp=pr(X,A) =X x3 AT, 2

3 In this work, we only consider the case in which the operand data x(I, m,n)
can be arranged as a cube, i.e., 0 <I/,m,n < N. To extend the functionality
to irregular cuboids, load balancing schemes must be additionally developed,
which goes beyond the scope of this work.

4 For brevity, henceforth, we shall take “tensor” to mean the order-3 tensor.



N. Malapally, V. Bolnykh, E. Suarez et al.

Algorithm 1 Procedure to perform the tensor-matrix multiplication pp.

Here, Z g), X and A are matrices. The tensors Z r» X can be obtained

(r)

by stacking their slices Z

, X along dimension 1 (see Fig. 1a).

1: for r <« 0to N do
2 ZVeXx0A
3: end for

Algorithm 2 Procedure to perform the tensor-matrix multiplication p; .
Here, Z (Lr) , X and A are matrices. The tensors Z 1, X are obtained by
stacking the slices Z X), X along dimension 1 (see Fig. 1b).

1: forr <~ 0to N do

2 ZV —ATXO

3: end for

Tensor-Matrix Multiplications

Loop direction r=0,...,N-1 2

Loop direction r=0,...,N-1

Fig. 1. Visualization of the procedures to compute the tensor-matrix multiplica-
tions (a) pi and (b) p;, as a set of independent matrix-matrix multiplications.

and a left product in terms of their mode-2 product as

Z; =p (X, A)=X x, AT, 3

where Zg,Z; € CNXNXN_ These products can be conceived as a
set of independent matrix-matrix multiplications as detailed in Algo-
rithms 1 and 2. To visualize this, one can view X as a stack of N
matrices X € CN*N for 0 < r < N, which we shall call the slices of
the tensor, piled up along any of the 3 orthogonal directions. In prac-
tice, to ensure a contiguous memory layout for optimal data access, we
fix the piling direction to direction 1, as illustrated in Fig. 1.

Using the products defined by equations (2) and (3), it can be shown
that the 3D DFT equation (1) can be rewritten in terms of tensor-matrix
multiplications as

Y =15(pr(72(p(pRr(X, C), C)), C)) ()]

where X,Y € CVXNXN are the input and output tensors respectively,
and C € CN*N is the DFT matrix. The operation 7, : CNXVXN _,
CNXNxN indicates the transposition of the slices along piling direc-
tion k € {1,2,3} of the operand tensor. In this specific case, this is
applied along direction k = 2.

In the implementation, the calculation of the transform via equa-
tion (4) can be performed in three stages [17]. In the first stage, the
tensor-matrix multiplication of the input data with the DFT matrix is
carried out as per Algorithm 1,

Y = pr(X,0). %)

In the second stage, a similar procedure is performed, this time using
the output of the first stage, and as per Algorithm 2,

Y =p,(¥,0). ®)

In the third stage, the piling direction for the tensor-matrix multiplica-
tion changes from 1 to 3. Consequently, in order to ensure a contiguous
memory layout for the subsequent multiplication, a preliminary step
must be performed in which ¥ is subjected to the transpose operation
represented by ,. After this, the final tensor-matrix multiplication is
carried out as per Algorithm 1. At the end, the transpose operation 7,
is applied once more to arrange the result in the same spatial layout
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Fig. 2. A tensor and a matrix are broken down into p? and p? blocks (here,
p =3), respectively. Each block is located in the memory of its corresponding
PE, as indicated by the number in the circles.

Table 1

Notation used in Algorithms 3, 4, 5, 6 and 7. See Fig. 2 for a
schematic representation of the PE mesh and the correspond-
ing locally allocated block tensors and block matrices. More
details are provided in the text.

PE(, j, k) A PE located at indices (i, j, k) in the cubic mesh
X ,“;)k Locally allocated operand block tensor

Yﬁ’k Locally allocated result block tensor

C,.(_l’y Locally allocated DFT block matrix

X ,“j” ©* C;bz Tensor matrix multiplication (Algorithm 1)
C;f’ZT * X l“;)k Tensor matrix multiplication (Algorithm 2)

as the input tensor X. Putting everything together, the third and final
stage implements the following operations:

Y = 5(pp(n,(¥), C)). @)

The tensor Y contains the result of the forward DFT operation of equa-
tion (4).

2.2. Adaptation of Cannon’s algorithm for block tensor-matrix
multiplication

In this subsection, we provide the designs of the procedures which
make use of the basic idea of Cannon’s algorithm [20] to perform
the operations of equations (5), (6), (7), resulting in three unique
distributed-memory block tensor-matrix multiplication algorithms.

In order to enable the use of as many Processing Elements (PEs)
as possible, the tensors X and Y from equation (4) are subjected to the
volumetric domain decomposition [13,16,17], resulting in a cubic mesh
comprising p3 PEs (see Fig. 2). Each PE(i, j, k) is accessible via indices
0<i,j,k < p, and has locally allocated operand and result block tensors
X l([;) o Yl(f)k € CPbxb _and an operand block matrix CJ(.f’]: € CP*, which is
obtained by matrix decomposition. The block size is given by b= N /p.

Fig. 2 is a schematic representation of volumetrically decomposed
data with p = 3. In this example, it is shown how a tensor can be de-
composed into p? block tensors, each of which is associated with and
contained in the memory of an independent PE. Moreover, it can be
seen how an operand matrix can be distributed to PEs in each block
plane by decomposing it into p? block matrices and assigning each block
to a PE. A pictorial definition of the block plane is also provided. To
help the reader, in Table 1 we report the notation used in the follow-
ing discussion of the algorithms to indicate the key elements depicted
in Fig. 2.
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Algorithm 3 Procedure of the adapted Cannon’s algorithm for the func-
tion Y = pr(X, C). See Table 1 for definitions.

Algorithm 4 Procedure of the adapted Cannon’s algorithm for the func-
tion Y = p; (X, C). See Table 1 for definitions.

> Alignment phase:
: if j #0 then
send X ,“;) B
cendif
: if k #0 then
send C/(b,z :
: end if

> Computation phase:
7: for r <0 to p do

PE(i, j, k) = PE(i, j,(k + p— j) mod p)

PE(i, j, k) = PE(i, (j + p — k) mod p, k)

QU s WwN =

8: Y(b) Y(h) X(b) C(b)
: ij.k ij, k i, k
9: if r < p—1 then
10: send X", PE(, j,k) = PE(i, j,(k+p— 1) mod p)
11: send C:  PE(i,j,k) = PE(i,(j + p— 1) mod p, k)
12: end if
13: end for

We will start by focusing on the block tensor-matrix multiplication
involved in the first stage, given by equation (5). From the description
of pp in Algorithm 1 we recall that the slices of X along piling di-
rection 1 are to be multiplied with C (see also Fig. 1a). Analogously,
here, the block tensors in each plane orthogonal to piling direction 1 are
to be multiplied with C. The multiplication of each such block plane
with C can be executed independently, and hence, parallely. It is for
this multiplication that we can utilize a scheme similar to that of the
original Cannon’s algorithm, with the essential deviation that one of
the operand matrices and the result matrix are replaced by operand
and result tensors, respectively. The adapted algorithm is composed of
an alignment phase and a computation phase, with a total of p com-
munication events. We define here a communication event as a set of
multiple, parallel message passing calls.® The alignment phase consists
of a single communication event involving 2p*(p — 1) parallel messages,
whereas the computation phase consists of p— 1 communication events,
each involving 2p® parallel messages respectively.

The algorithm for py is as outlined in Algorithm 3. In the alignment
phase, the block tensors X; b . and block matrices Cb are redistributed
to different PEs following the rules detailed in lmes 1-6 of the proce-
dure. In the computation phase, the operation in line 8, which we refer
to as the local update, can be performed slice-wise as per Algorithm 1,
either sequentially, or, when additional computational resources are
available to each PE, using a separate mode of parallelism, giving rise
to multi-level parallelism. Additionally, the communication event (lines
10 and 11) and the local update can be executed in parallel. At the end
of the computation phase, the block tensor Y(jb) located in each PE con-
tains the block result of the desired product. We observe here that the
communication of block tensors (line 10) occurs between PEs that are
neighbours along direction 3 of the PE mesh.

The algorithm for the multiplication of the second stage, given by
equation (6), is outlined in Algorithm 4. It is very similar to that of the
first stage, albeit with minor changes in the pattern of communication.
Here, it is worth highlighting the fact that the communication of block
tensors (line 8) occurs between PEs that are aligned along direction 2
of the PE mesh.

The algorithm for the third stage needs to incorporate the trans-
pose operations represented by 7, in equation (7). Although these global
transpositions are unavoidable, we can avoid communication events by
transposing the PE mesh instead of the data itself. All the same, a lo-
cal (i.e., not involving communication) data transpose function is still
required to perform the transposition of the operand and result block
tensors. The procedure of the adapted Cannon’s algorithm for the third
stage is provided in Algorithm 5. Note that, in this case, the commu-

5 Conceptually, parallel messages are passed independently and simultane-
ously by all PEs and thus the duration of a single communication event is
decided by the most time-consuming message passing.

> Alignment phase:

1: if k # 0 then

2. send Xf?k PE(i, j, k) — PE(i,(j + p — k) mod p, k)
3 endif

4 send C%) : PE(i, j,k) » PE(i, k, (j + p — k) mod p)

> Comfmtation phase:
: for r <0 to pdo

() (b) T (b)
Yi,j.k‘_},ljk-'—c >|<)(!/k
if r<p—1 then

send X :
i.j.k
send C(’f :
o

10: end if
11: end for

PE(i, j, k) — PE(@i,(j + p— 1) mod p, k)
PE(i, j, k) = PE(, j,(k+ p— 1) mod p)

v PN J

Algorithm 5 Procedure of the adapted Cannon’s algorithm for the func-
tion Y = 7,(p; (7,(X), C)). See Table 1 for definitions.

> First local transposition:
1 X0 —nx®)

ij.k i,k
> Alignment phase:
2: if j #0 then
3 Send X", : PE(,j k)~ PE((i +p— j) mod p, j,k)
4: end if
5: Send cj“’,: : PE(,j, k) — PE(k,(j + p— k) mod p, i)

> Computation phase:

6: for r <0 to p do
. (b) (b) (b) (b)
7 Yrjk Yl]k+lek*C
8: if r<p—1 then
o send X : PE(i,j,k) = PE((i + p— 1) mod p, j, k)
10: send CJ(.”,: : PE(,j,k) = PE(i,(j + p— 1) mod p, k)
11: end if
12: end for

> Final local transposition:
13: YO —n(r D)

Simplified Visual Example for Strided Communication in a Fat Tree Network
Direction 3 (1-strided)
- -~ Direction 2 (2-strided)
------ Direction 1 (4-strided)

Fig. 3. Neighbours along directions 3, 2 and 1 in the PE mesh (not shown here)
are 1-strided, 2-strided and 4-strided, respectively. This means that messages
between neighbours along directions 3, 2 and 1 must cross 1, 3 and 5 switches,
respectively. This leads to different communication rates.

nication of block tensors (line 9) occurs between PEs that are aligned
along direction 1 of the PE mesh.

2.3. Global transpose variants

Our performance analysis of the distributed-memory block tensor-
matrix multiplication functions (see subsection 5.2) showed that the
direction along the PE mesh in which point-to-point communication
between neighbours takes place crucially decides the time of communi-
cation. This is due to how the communication patterns of the algorithms
are mapped into subsets of the fat tree topology. To understand this, let
us consider a simplified visual example with p =2 and a fat tree net-
work with two servers per edge, as shown in Fig. 3. In the PE mesh,
neighbours along all three directions are equidistant pairs. However, in
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Algorithm 6 Procedure of the global transpose variant of the adapted
Cannon’s algorithm for the function Y = p; (X, C). See Table 1 for defi-
nitions.
> First local transposition:

L: X:(i)k < Tl(Xi(,l;).k)

> Alignment phase:
. send Xjf}fk . PE(,j, k) = PE(i,k, (j + p— k) mod p)
. if k # 0 then
send Cjb,f : PE(,j, k) — PE(G,(j + p— k) mod p, k)
: end if

> Computation phase:

g oA W N

6: for r < 0 to p do
! ® ®) ® ®

7o Y e Yt X * Gy

8: if r<p—1 then

o send X", © PE(i,j,k) = PE(, j,(k+p— 1) mod p)
10: send C\): PE(,j k)~ PEG,(j +p—1) mod p, k)
11: end if
12: end for

> Global transpose:
13: send Y}j’?)k : PE(,j,k) - PE(i, k, j)
> Final local transposition:
. y® (b)
4 Y = n )

Algorithm 7 Procedure of the global transpose variant of the adapted
Cannon’s algorithm for the function Y = 7,(p (7,(X), C)). See Table 1
for definitions.
> First local transposition:
L: Xl(ﬁ)k < TZ(X[(T[;).k)
> Alignment phase:

2: Send X"fk : PE(,j,k) = PE(k, j,(i + p— j) mod p)
3: if k #0 then
4 Send C): PE(,j,k)— PE(i,(j+p— k) mod p,k)
5: end if
> Computation phase:
6: for r — 0 to p do
7Yy X, )
8: if r<p—1 then
o: send ij{k : PE(i,j, k) = PE(i,j,(k + p— 1) mod p)
10: send C\): PE(,j k)~ PEG,(j + p—1) mod p, k)
11: end if
12: end for
> Global transpose:
13: send Y®) :  PE(,j, k) — PE(k, j,i)

ijk
> Final local transposition:

. y® (b)
14: Y, <)

the network, depending on the stride between the neighbours, messages
may cross 1, 3 or 5 switches, which leads to three possible, distinct com-
munication rates.

In practice, similarly, if p is large enough in relation to the num-
ber of nodes on the server level in the allocation, up to three distinct
communication rates can be realized. In our tests, we observed that the
communication rate is the highest for direction 3 in the PE mesh, fol-
lowed by direction 2 and finally, direction 1.

From Algorithms 3, 4 and 5, it can be seen that the computation
phase involves p — 1 more communication events than the alignment
phase, a number which scales linearly with the node count. To limit
the communication to direction 3 as much as possible, we implemented
variants of Algorithms 4 and 5, in which the data is globally transposed
in the alignment phase such that, in the computation phase, communi-
cation only occurs between neighbours along direction 3. This strategy
has additional costs: (i) both procedures include an additional com-
munication event after the computation phase, in which the transposed
data is transposed back; (ii) in both procedures, local data transpositions
become necessary before the alignment phase and after the computation
phase. The procedures for these variants are provided in Algorithms 6
and 7.

Journal of Parallel and Distributed Computing 193 (2024) 104945

2.4. Modeling the overlapping of the communication and the computation

In the computation phase of all the distributed-memory algorithms
discussed in the previous subsections, the communication event and the
local update can be overlapped to hide the latency of communication.
To identify configurations of block size and node count for which the
highest efficiency of a block tensor-matrix multiplication algorithm can
be attained, it is useful to separately model the time of the communi-
cation event and the time of the local update in the problem size range
of interest, as a function of the block size. To this end, microbench-
mark programs that exactly imitate the communication event and the
local update can be used. The obtained times can then be fitted as poly-
nomials. The points of intersection of the two fitted curves fulfill the
condition of maximum efficiency of the overlapping under which the
algorithm does not incur any communication overhead. This is also the
case in block size intervals in which the time of the local update is al-
ways greater than that of communication. We used this approach to
select the configurations of block size and node count in our perfor-
mance analysis in subsection 5.2.

3. Details of implementation

The 3D DFT by block tensor-matrix multiplication algorithm was
implemented as a C++ library named S3DFT, which has a distributed-
memory Application Programming Interface (API - the set of functions
which are to be used to compute the 3D DFT) in both single and dou-
ble precision. The library was built using the Intel compiler and the
Intel MKL and Intel MPI libraries, which are part of the Intel OneAPI
v2021.4.0 toolkit suite. It is open-source software available for use un-
der the GNU Lesser General Public License v3 (LGPL) [24].

S3DFT combines the use of shared- and distributed-memory paral-
lelism by means of an OpenMP/MPI hybrid approach. On the shared-
memory level, the computational work is identified by a set of slices of
the operand tensor. In all shared-memory functions, we use a custom
work-sharing function, which (provided the number of threads is con-
stant) always returns the same set of indices of operand tensor slices
for any given thread. This tactic ensures that the association between
operand data and threads does not change. Combined with proper run-
time thread pinning, it strongly reduces the number of non-local mem-
ory accesses in NUMA systems, which are significantly slower than local
memory accesses. This design makes sure that S3DFT can be run with
threads distributed across NUMA domains without a performance drop.
The excellent scaling of S3DFT across NUMA domains is demonstrated
by the performance analysis presented in subsection 5.1.

Initial profiling of the distributed-memory block tensor-matrix mul-
tiplication functions that implement Algorithms 3, 4 and 5 (see subsec-
tion 5.2) revealed that the time of communication significantly exceeds
that of the local update, which confirms our initial speculation that the
communication (and not the computation) would be the bottleneck. To
hide the latency of communication, we decided to dedicate one thread
to communication. Our work-sharing function fulfills this requirement
by returning an empty set for the communicating thread and distribut-
ing the slices of the operand tensor amongst the remaining threads in a
round-robin fashion.

The local update mentioned in subsection 2.2 has been realized by a
shared-memory tensor-matrix multiplication function, which computes
the product as a set of parallel matrix-matrix multiplications as shown
in Algorithms 1 and 2. For this, we used the CBLAS implementation
provided by the Intel MKL v2021.4.0. We see from the strong scaling
of the function (Fig. 4b) that the difference in performance when all
48 cores are used and when 47 cores are used is small, with the per-
formance decreasing only slightly from 88% to 85% of the single node
peak performance. Hence, the use of a dedicated communication thread
does not reduce the performance of the local update much.
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Table 2
Specifications of the standard compute node of the JUWELS
cluster.

Processor Intel Xeon® Platinum 8168 (Skylake)

CPU count 2 (sockets)

Core count 48 cores (24 cores per CPU)

SMT/HT Available, 96 threads (48 threads per CPU)

Clock frequency [1.2-3.7 GHz], base @ 2.7 GHz
Cache L1-32kB,L2-1MB, L3-33MB
DRAM 96 GB DDR4 @ 2666 MHz

Table 3
Cache and memory bandwidths ac-
cording to Intel Advisor.

Bandwidth

1x NUMA 2x NUMA
L1 11.6 TB/s  23.2 TB/s
L2 5.5 TB/s 11.0 TB/s
L3 649 GB/s 1299 GB/s
DRAM  115GB/s 230 GB/s

4. Specifications of the JUWELS cluster

All benchmarks and tests in this work have been executed on the
JUWELS Cluster [19], which uses a fat tree network with InfiniBand in-
terconnects. The standard compute node has two cache-coherent NUMA
domains. The salient specifications are listed in Table 2, and the peak
bandwidths as obtained with the Intel Advisor tool [25], in Table 3.
These numbers were used as reference values while analysing the per-
formance of the core functions of the implementation.

Since Intel did not explicitly provide information on peak perfor-
mance in terms of FLOP/s at the time of writing of this article [26], the
peak performance of the compute node had to be estimated using the
published specifications. The base frequency of the Intel Xeon® Plat-
inum 8168 processor is 2.7 GHz [27]. However, when all cores are
active and the use of AVX-512 instructions is maximized, the clock
frequency drops to 2.5 GHz [27]. The processor is equipped with 2
AVX-512 Fused Multiply-Add (FMA) units per core, which yields a
theoretical peak performance of 3840 GFLOP/s. Corroborating this es-
timation, Intel Advisor’s roofline chart includes information about the
double-precision FMA peak performance [25], which in this case is
3812 GFLOP/s. Henceforth, we refer to this value when we speak about
the peak performance of the node.

5. Performance analysis of components

In this section, we present the performance analysis of the core func-
tions of the S3DFT implementation. For this analysis, the functions were
microbenchmarked on the JUWELS Cluster in double precision. The
open-source library TiXL, which is available under the LGPL v3, was
used for this purpose [28].

The microbenchmark programs consist of (i) an initialization phase,
in which operand/result data are allocated afresh, and each OpenMP
thread (excepting the communication thread) accesses the first word
of each memory page of its associated data — thereby ruling out the
measuring of page-faults, (ii) an experiment phase, in which the func-
tion of interest is run, and (iii) a clean-up phase, in which all data is
freed. Each benchmark test was concluded by performing 20 warm-up
and 100 timed runs. The experiment phase of only the latter runs was
used to measure the duration of the function of interest. The result was
calculated as the geometric mean of these measurements.

Via mircobenchmarking, we present a breakdown of the run time
of the main API function in Table 4 for node count 343 (i.e., p=7)
and problem size N = 4200. Since the shared-memory tensor zero-
ing and transpose functions constitute a negligible fraction of the total
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Table 4
Breakdown of S3DFT’s main API function for p=7 and N = 4200.

Distributed-Memory Function Run Time Percentage

Block Tensor-Matrix Multiplication (Algorithm 3) 21%
Transp. Block Matrix-Tensor Multiplication (Algorithm 4) 35%
Transp. Block Tensor-Matrix Multiplication (Algorithm 5) 44%

Shared-Memory Function

Tensor-Matrix Multiplication, 9%
Transp. Matrix-Tensor Multiplication

Set Zero Tensor 0.8%
Transpose Tensor 1%

Scaling of Shared-Memory Tensor-Matrix Multiplication
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Fig. 4. Subfigures show (a) problem scaling as a function of block size and (b)
strong scaling of the shared-memory tensor-matrix multiplication. Grey and
blue curves are for single (24 cores) and dual (48 cores) NUMA configurations,
with N =900 and N = 1100, respectively. The red line in subfigure (b) in-
dicates the peak performance of the single node, while the grey dashed line
indicates ideal linear scaling.

run time, they have been excluded from the section. For completeness,
a performance analysis of the local transpose function is still reported
in Appendix A.

5.1. Shared-memory tensor-matrix multiplication

This function performs the local update operation of the distributed-
memory tensor-matrix multiplication as mentioned in subsection 2.2.

We began the analysis by running problem scaling tests using all
available cores in the single and dual NUMA configurations to identify
the problem sizes at which peak performances of the function can be ex-
pected. Next, we conducted strong scaling tests for these problem sizes.
The results are reported in Fig. 4. We observed a peak performance of
1671 GFLOP/s at N =900 and of 3373 GFLOP/s at N = 1100 for the
single and dual NUMA configurations, respectively. This corresponds to
88% of the peak performance. As shown in the right panel of Fig. 4, the
function scales well.

To estimate the corresponding effective bandwidth,® we must first
model the traffic and computation requirements of Algorithm 1. For
a tensor of side N, a computer can perform 8N* floating point op-
erations’ after 2N3(N + 1) transfers. For double precision, we have
the code balance given by B, = 3N+D 4 B/FLOP. Using the roofline
model, we can calculate the effective bandwidth as b; = B, P, where P
is the attained performance [29, p. 66]. Following this, we can estimate
peak effective bandwidths b, = 6.7 TB/s and b, = 13.5 TB/s for the sin-
gle and dual NUMA configurations, respectively, which are greater than
the corresponding L2-cache bandwidths listed in Table 3. This can be
taken to conclude that the function makes excellent use of caching.

6 The effective bandwidth is calculated using the run time and the a priori
data traffic estimation.

7 Each complex number addition and multiplication involves at least 2 and 6
FLOPs respectively.
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Modelling the Overlapping of Communication and Computation
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Fig. 5. Fitted curves model the time of the communication event (continuous
lines) and that of the local update (dashed line) as functions of block size. The
black dots indicate the intersections at which perfect overlapping can be ex-
pected. Subfigures (a) and (b) report results obtained in 2 MPI tasks/node and
1 MPI task/node configurations, respectively.

5.2. Distributed-memory block tensor-matrix multiplication

In this analysis, we consider the implementations of Algorithms 3, 4
and 5.

First, following the approach outlined in subsection 2.4, we iden-
tified the configurations of block size and node count for which the
highest efficiency of the Algorithm 3 can be reached. For this purpose,
we designed microbenchmark programs which exactly imitate the com-
munication event and the local update, respectively, and ran them for
p=2,3,4,5,6 and b € [100, 1300]. As shown in Fig. 5, we then fitted the
obtained times with cubic polynomials to model the time of the com-
munication event for the node count of interest (continuous curve), and
a quartic polynomial for that of the local update (dotted curves). The
optimal block sizes for the above-stated node counts were found to be
b > 750 for the 2 MPI tasks/node (single NUMA) and b > 600 for the 1
MPI task/node (dual NUMA) configurations, respectively.

Next, we conducted strong scaling tests for the Algorithms 3, 4 and 5
in the 1 MPI task/node configuration for the problem size N = 4200
and p=4,5,6,7, corresponding to block sizes b = 1050, 840, 700, 600, at
which the latency of the communication event is expected to be com-
pletely hidden by the overlapping (see Fig. 5b). The results are reported
in Fig. 6, showing parallel efficiencies® in the ranges of 81%-95%,
58%-77% and 51%—68% for Algorithms 3, 4 and 5, respectively.

To understand the poor scaling of Algorithms 4 and 5, we mi-
crobenchmarked the code of the communication event in the compu-
tation phase of the three block tensor-matrix multiplication algorithms.
As shown in Fig. 7, the results revealed that the communication rate
varies considerably with the direction along which the neighbours are
identified, as the node count is increased. Interestingly, the communi-
cation rate between neighbours along direction 3 in the PE mesh is the
highest, followed by direction 2 and finally, direction 1. As noted in
subsection 2.2, in the computation phase of the Algorithms 3, 4 and 5,
most of the communication occurs between neighbours along direc-
tions 3, 2 and 1, respectively. This explains the scaling performance
of each algorithm.

Finally, on another note, we observe that the performance of the
local update reduces with reducing block size (see the left panel of
Fig. 4), which warns us of a reduction in the shared-memory resource
utilization as the node count scales up, which predicts an additional
cause for the worsening of the strong-scaling performance of the above-
mentioned algorithms.

8 Here, the parallel efficiency has been evaluated relative to p =4 case (i.e.,
with 64 nodes) which is the minimum number of nodes we could use for the
given problem size due to memory limitations.
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5.3. Global transpose variants

In an attempt to overcome the problem discussed in the previous sec-
tion, we implemented variants of Algorithms 4 and 5 in which the trans-
position of the PE mesh is replaced by the global transposition of the
data, as outlined by Algorithms 6 and 7. This resulted in improvements
in the strong-scaling performance (see red curves in Figs. 6b and 6c¢),
with parallel efficiencies of 65%—81% and 70%-95% for Algorithms 6
and 7, respectively. However, the overall performance was found to suf-
fer considerably due to the additional communication events required.

6. Comparison with Intel MKL and FFTW3

Here, we present the results of the benchmarking of S3DFT against
two competitive 3D FFT implementations: Intel MKL v2021.4.0° and
FFTW3 v3.3.10. The benchmarking procedure is identical to that out-
lined in section 5, with the exception that 70 warm-up runs and 50
timed experiments were conducted. In the plots included in this subsec-
tion, we report the geometric mean of the run time. In the programs
that recorded the performance of the cluster-based Intel MKL/FFTW3
libraries, multithreading was initialized as per the manual [30]. The
FFTW-plan [11] was created in the initialization phase of the program
using the flag FFTW_MEASURE. To be able to benchmark under repro-
ducible conditions, contiguous node allocation was requested. Within a
single compute node, a thread-placement policy of 1 thread/core was
applied. Further, each thread was pinned to avoid thread migrations by
the operating system during runtime.

Initial testing showed that both Intel MKL and FFTW3 performed
much better when launched with 2 MPI tasks/node, which corresponds
to 1 NUMA domain/MPI task. Therefore, their benchmarking programs
were always run using this configuration. S3DFT was found to perform
similarly in both the 1 MPI task/node and 2 MPI tasks/node configura-
tions.

In what we call small problem scale, strong scaling comparisons
were conducted for problem sizes N = 120,240,480, 600, 840. Similarly,
in the large problem scale, we did the strong scaling comparisons for
problem sizes N =2520,3360,4200. Moreover, these comparisons were
conducted two-fold, with S3DFT in the 1 MPI task/node and 2 MPI
tasks/node configurations. In all these comparisons, we observed sim-
ilar scaling behaviours and performances for all investigated problem
sizes. The results for sizes N = 840,3360 are provided in Figs. 8 and 9.

Results show that Intel MKL was consistently the fastest across all
problem sizes and node counts, followed by FFTW3. On average, in the
small problem scale and with S3DFT in the 2 MPI tasks/node configu-
ration, Intel MKL was 2.5 times faster and FFTW3 was 1.8 times faster
than S3DFT. With S3DFT in the 1 MPI task/node configuration, Intel
MKL was 2.2 times faster and FFTW3 was 1.5 times faster than S3DFT.
Frequently, for small node counts, S3DFT was found to be slightly faster
than FFTW3 (see, e.g., Fig. 8a). In the large problem scale, Intel MKL
was 3.7 times faster and FFTW3 was 2.3 times faster than S3DFT.

The benchmarking was repeated for the same problem scales, sizes,
node counts and MPI tasks/node configurations with the implemen-
tations of Algorithms 4 and 5 being replaced by the global transpose
variants (GTV) 6 and 7. As can be seen in Figs. 10 and 11, the re-
sult of the comparison with FFTW3 and Intel MKL remained essentially
unchanged, even in the large problem scale, despite the significant im-
provement of S3DFT’s scaling. Specifically, in the small problem scale
and with S3DFT in the 2 MPI tasks/node configuration, Intel MKL was
3.0 times faster and FFTW3 was 2.2 times faster than S3DFT. With
S3DFT in the 1 MPI task/node configuration, Intel MKL was 2.4 times
faster and FFTW3 was 1.7 times faster than S3DFT. In the large problem

® We made use of the convenient FFTW3 wrapper interface provided by Intel
MKL, which makes use of its implementation of cluster FFT functions.
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Strong Scaling of Distributed-Memory Block Tensor-Matrix Multiplications
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Fig. 6. The blue curves in subfigures (a), (b) and (c) show the strong scaling performance of the implementations of Algorithm 3, Algorithm 4 and Algorithm 5,
respectively, at problem size N = 4200, in the 1 MPI task/node configuration. The grey dashed lines indicate ideal linear scaling. The red curves in subfigures (b)
and (c) show the results obtained using the global transpose variants 6 and 7, respectively.
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neighbours along directions 3, 2 and 1, respectively.

Strong Scaling of S3DFT, Intel MKL and FFTW3 for N = 840
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Fig. 8. Subfigures show (a) the time-to-solution and (b) the speed-up for N =
840. In subfigure (a), the lower border of the shading underneath the lines
indicates the minimum time. Here, S3DFT was run using 2 MPI tasks/node.

Strong Scaling of S3DFT, Intel MKL and FFTW3 for N = 3360
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Fig. 9. Subfigures show (a) the time-to-solution and (b) the speed-up for N =
3360. In subfigure (a), the lower border of the shading underneath the lines
indicates the minimum time. Here, S3DFT was run using 1 MPI task/node.

Strong Scaling of S3DFT (GTV), Intel MKL and FFTW3 for N = 840
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Fig. 10. In this comparison, S3DFT uses the global transpose variants as detailed
in subsection 2.2. Subfigures show (a) the time-to-solution and (b) the speed-up
for N = 840. In subfigure (a), the lower border of the shading underneath the
lines indicates the minimum time. Here, S3DFT was run using 2 MPI tasks/node.

Strong Scaling of S3DFT (GTV), Intel MKL and FFTW3 for N = 3360
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Fig. 11. In this comparison, S3DFT uses the global transpose variants as detailed
in subsection 2.2. Subfigures show (a) the time-to-solution and (b) the speed-up
for N =3360. In subfigure (a), the lower border of the shading underneath the
lines indicates the minimum time. Here, S3DFT was run using 1 MPI task/node.

scale, Intel MKL was 3.6 times faster and FFTW3 was 2.2 times faster
than S3DFT.

We note that other parallel 3D FFT implementations might have
higher scaling limits than FFTW3 and Intel MKL. This is to be expected
especially for libraries that make use of the pencil decomposition, such
as FFTK [15], for which scaling up to 196,608 cores has been demon-
strated. A comparison of S3DFT with FFTK is provided in Appendix B.
Briefly, FFTK was found to be on average 4 times faster than S3DFT.

7. Conclusions

We have presented a new parallel algorithm that exploits block
tensor-matrix multiplication to compute the 3D DFT of a volumetrically
decomposed, cubic domain using point-to-point communication. The al-
gorithm has been implemented as a C++ library called S3DFT capable
of utilizing shared-memory parallelism across multiple NUMA domains
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within a single node and distributed-memory parallelism across mul-
tiple nodes. In the process, we designed, developed and tested three
adapted variants of Cannon’s algorithm. These adaptations enable the
use of tensor operands, realize multi-level parallelism and make effi-
cient use of the technique of overlapping computation and communica-
tion with the help of a custom work-sharing function for OpenMP-based
multithreading. S3DFT has been optimized for the JUWELS Cluster and
its core functions have been analyzed to show their efficiency. Finally,
the performance of S3DFT has been compared with those of well-
established, widely-used libraries for a wide range of problem sizes.

Our analysis by microbenchmarking has shown that S3DFT has a
highly efficient implementation on the shared-memory level. On the
other hand, we found that while one of the three required distributed-
memory block tensor-matrix multiplication algorithms scales excel-
lently, the other two scale poorly. We identified the origin of this
problem in the mapping of their communication patterns in subsets of
the fat tree topology: this result exposes a potential drawback of run-
ning block-wise parallel algorithms on systems with fat tree networks,
which is caused by increased communication latencies along specific
Cartesian directions in the PE mesh.

In an effort to improve the scalability of S3DFT, we designed algo-
rithmic variants of the poorly scaling components in which the majority
of the communication occurs between PEs aligned along the Cartesian
direction in which the communication was found to be the fastest. This
was made possible by performing global data transpositions instead of
transposing the PE mesh, which comes at the cost of additional commu-
nication events. Although these variants improved the strong-scaling
performance of S3DFT, its overall performance did not change consid-
erably.

Our results let us speculate that at the current stage, the 3D DFT by
block tensor-matrix multiplication is not a viable alternative to mod-
ern FFT-based approaches on computer clusters using fat tree networks.
Different results might be expected on different computer clusters. For
example, it is possible that S3DFT performs and scales considerably
better on a computer cluster based on a network topology which is iso-
morphic to the PE mesh. Unfortunately, we did not have access to such
a system to verify this hypothesis.
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Strong Scaling of DAXPY, Naive and Optimized Transpose Functions for N =720
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and (b) strong scaling in dual NUMA configuration. In both subfigures, N = 720.
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Appendix A. Performance analysis of the transpose function

Here, we take a closer look at the performance of our implementa-
tion of the local transpose function, = of equation (7). The transpose
function can be viewed as a streaming function because in a perfect
implementation it would closely resemble a copy operation. Thus, one
way to assess the performance of our implementation is to compare it to
that of a suitably similar streaming function having an excellent mem-
ory bandwidth utilization. As a reference, we decided to use the DAXPY
loop, by measuring the performance of the operation Y =Y + aX on
the target computer, where Y, X € RV are double-precision arrays and
a € R is a double-precision scalar. We performed the microbenchmark-
ing with N =720, at which size the performance of the loop was found
to saturate. The black lines in Fig. A.12 illustrate the increase of the ef-
fective bandwidth of this reference loop as a function of the number of
cores, for the single as well as dual NUMA configurations. The recorded
corresponding peak performances are 103 GB/s and 202 GB/s, respec-
tively. We used these values as reference to measure the efficiency of
our implementation of the transpose function.

The performance of the naive implementation of the transpose func-
tion is shown by the red curves in Fig. A.12 for the size N = 720.
Building on it, we improved the cache utilization by applying loop-
blocking with the help of an intermediate array so small as to fit into
the cache. The optimal blocking size was experimentally found to be
36 kiB. Upon optimization, only a small improvement in performance
could be observed, as shown by the blue curves in Fig. A.12. Indeed, we
found the performance of the niive implementation to be quite high,
which we attributed to the size of the processor’s L3-cache, by virtue of
which good cache-line reuse can be achieved even for relatively large
matrix sizes.

In the single NUMA configuration, the optimized transpose func-
tion attained a peak efficiency of 91% as compared to that of 73%
of the naive function. However, we note that the efficiencies drop to
63% and 53% respectively, when the dual NUMA configuration is ap-
plied. This can be attributed to unavoidable non-local memory accesses
arising from the fact that the functions make use of a different multi-
threading work-sharing plan as compared to the other kernels in the
implementation. Although an adaptation of the algorithm to minimize
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Strong Scaling of S3DFT (GTV) and FFTK for N = 840
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Fig. B.13. In this comparison, S3DFT uses the global transpose variants as de-
tailed in subsection 2.2. Subfigures show (a) the time-to-solution and (b) the
speed-up for N = 840. In subfigure (a), the lower border of the shading under-
neath the lines indicates the minimum time. Here, S3DFT was run using 2 MPI
tasks/node.

Strong Scaling of S3DFT (GTV) and FFTK for N = 3360
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Fig. B.14. In this comparison, S3DFT uses the global transpose variants as de-
tailed in subsection 2.2. Subfigures show (a) the time-to-solution and (b) the
speed-up for N = 3360. In subfigure (a), the lower border of the shading under-
neath the lines indicates the minimum time. Here, S3DFT was run using 1 MPI
task/node.

these non-local memory accesses is conceivable, the expected perfor-
mance gain did not justify its design and implementation within the
scope of this study.

Appendix B. Comparison with FFTK

Figs. B.13 and B.14 show the benchmarking results of S3DFT (using
the global transpose variants described in subsection 2.2) and FFTK. In
the small problem scale, with S3DFT in the 2 MPI tasks/node configu-
ration, on average, FFTK was 3.8 times faster than S3DFT. In the large
problem scale, with S3DFT in the 1 MPI task/node configuration, on
average, FFTK was 4.3 times faster than S3DFT.
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