001028722 001__ 1028722
001028722 005__ 20250310131233.0
001028722 020__ $$a979-8-3503-3099-1
001028722 0247_ $$2doi$$a10.1109/ISCAS58744.2024.10558658
001028722 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04779
001028722 0247_ $$2WOS$$aWOS:001268541104029
001028722 037__ $$aFZJ-2024-04779
001028722 041__ $$aEnglish
001028722 1001_ $$0P:(DE-Juel1)190961$$aHizzani, Mohammad$$b0$$eCorresponding author
001028722 1112_ $$a2024 IEEE International Symposium on Circuits and Systems (ISCAS)$$cSingapore$$d2024-05-19 - 2024-05-22$$gISCAS$$wSingapore
001028722 245__ $$aMemristor-based hardware and algorithms for higher-order Hopfield optimization solver outperforming quadratic Ising machines
001028722 260__ $$bIEEE$$c2024
001028722 300__ $$a1-5
001028722 3367_ $$2ORCID$$aCONFERENCE_PAPER
001028722 3367_ $$033$$2EndNote$$aConference Paper
001028722 3367_ $$2BibTeX$$aINPROCEEDINGS
001028722 3367_ $$2DRIVER$$aconferenceObject
001028722 3367_ $$2DataCite$$aOutput Types/Conference Paper
001028722 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1738824733_24854
001028722 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001028722 520__ $$aIsing solvers offer a promising physics-based approach to tackle the challenging class of combinatorial optimization problems. However, typical solvers operate in a quadratic energy space, having only pair-wise coupling elements which already dominate area and energy. We show that such quadratization can cause severe problems: increased dimensionality, a rugged search landscape, and misalignment with the original objective function. Here, we design and quantify a higher-order Hopfield optimization solver, with 28nm CMOS technology and memristive couplings for lower area and energy computations. We combine algorithmic and circuit analysis to show quantitative advantages over quadratic Ising Machines (IM)s, yielding 48x and 72x reduction in time-to-solution (TTS) and energy-to-solution (ETS) respectively for Boolean satisfiability problems of 150 variables, with favorable scaling.
001028722 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001028722 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001028722 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x2
001028722 588__ $$aDataset connected to CrossRef Conference
001028722 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x0
001028722 7001_ $$0P:(DE-Juel1)174220$$aHeittmann, Arne$$b1$$ufzj
001028722 7001_ $$0P:(DE-HGF)0$$aHutchinson, George$$b2
001028722 7001_ $$0P:(DE-Juel1)188725$$aDobrynin, Dmitri$$b3
001028722 7001_ $$0P:(DE-HGF)0$$aVan Vaerenbergh, Thomas$$b4
001028722 7001_ $$0P:(DE-HGF)0$$aBhattacharya, Tinish$$b5
001028722 7001_ $$0P:(DE-Juel1)198908$$aRenaudineau, Adrien$$b6
001028722 7001_ $$0P:(DE-HGF)0$$aStrukov, Dmitri$$b7
001028722 7001_ $$0P:(DE-Juel1)188145$$aStrachan, John Paul$$b8$$ufzj
001028722 773__ $$a10.1109/ISCAS58744.2024.10558658$$p1-5
001028722 8564_ $$uhttps://ieeexplore.ieee.org/document/10558658
001028722 8564_ $$uhttps://juser.fz-juelich.de/record/1028722/files/QUBOvsPUBOISCAS2024.pdf$$yOpenAccess
001028722 8564_ $$uhttps://juser.fz-juelich.de/record/1028722/files/QUBOvsPUBOISCAS2024.gif?subformat=icon$$xicon$$yOpenAccess
001028722 8564_ $$uhttps://juser.fz-juelich.de/record/1028722/files/QUBOvsPUBOISCAS2024.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001028722 8564_ $$uhttps://juser.fz-juelich.de/record/1028722/files/QUBOvsPUBOISCAS2024.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001028722 8564_ $$uhttps://juser.fz-juelich.de/record/1028722/files/QUBOvsPUBOISCAS2024.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001028722 909CO $$ooai:juser.fz-juelich.de:1028722$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001028722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190961$$aForschungszentrum Jülich$$b0$$kFZJ
001028722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174220$$aForschungszentrum Jülich$$b1$$kFZJ
001028722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188725$$aForschungszentrum Jülich$$b3$$kFZJ
001028722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188145$$aForschungszentrum Jülich$$b8$$kFZJ
001028722 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001028722 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001028722 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x2
001028722 9141_ $$y2024
001028722 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028722 920__ $$lyes
001028722 9201_ $$0I:(DE-Juel1)PGI-14-20210412$$kPGI-14$$lNeuromorphic Compute Nodes$$x0
001028722 980__ $$acontrib
001028722 980__ $$aVDB
001028722 980__ $$aUNRESTRICTED
001028722 980__ $$acontb
001028722 980__ $$aI:(DE-Juel1)PGI-14-20210412
001028722 9801_ $$aFullTexts