001     1028722
005     20250310131233.0
020 _ _ |a 979-8-3503-3099-1
024 7 _ |a 10.1109/ISCAS58744.2024.10558658
|2 doi
024 7 _ |a 10.34734/FZJ-2024-04779
|2 datacite_doi
024 7 _ |a WOS:001268541104029
|2 WOS
037 _ _ |a FZJ-2024-04779
041 _ _ |a English
100 1 _ |a Hizzani, Mohammad
|0 P:(DE-Juel1)190961
|b 0
|e Corresponding author
111 2 _ |a 2024 IEEE International Symposium on Circuits and Systems (ISCAS)
|g ISCAS
|c Singapore
|d 2024-05-19 - 2024-05-22
|w Singapore
245 _ _ |a Memristor-based hardware and algorithms for higher-order Hopfield optimization solver outperforming quadratic Ising machines
260 _ _ |c 2024
|b IEEE
300 _ _ |a 1-5
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1738824733_24854
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Ising solvers offer a promising physics-based approach to tackle the challenging class of combinatorial optimization problems. However, typical solvers operate in a quadratic energy space, having only pair-wise coupling elements which already dominate area and energy. We show that such quadratization can cause severe problems: increased dimensionality, a rugged search landscape, and misalignment with the original objective function. Here, we design and quantify a higher-order Hopfield optimization solver, with 28nm CMOS technology and memristive couplings for lower area and energy computations. We combine algorithmic and circuit analysis to show quantitative advantages over quadratic Ising Machines (IM)s, yielding 48x and 72x reduction in time-to-solution (TTS) and energy-to-solution (ETS) respectively for Boolean satisfiability problems of 150 variables, with favorable scaling.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 1
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef Conference
650 2 7 |a Others
|0 V:(DE-MLZ)SciArea-250
|2 V:(DE-HGF)
|x 0
700 1 _ |a Heittmann, Arne
|0 P:(DE-Juel1)174220
|b 1
|u fzj
700 1 _ |a Hutchinson, George
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Dobrynin, Dmitri
|0 P:(DE-Juel1)188725
|b 3
700 1 _ |a Van Vaerenbergh, Thomas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bhattacharya, Tinish
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Renaudineau, Adrien
|0 P:(DE-Juel1)198908
|b 6
700 1 _ |a Strukov, Dmitri
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Strachan, John Paul
|0 P:(DE-Juel1)188145
|b 8
|u fzj
773 _ _ |a 10.1109/ISCAS58744.2024.10558658
|p 1-5
856 4 _ |u https://ieeexplore.ieee.org/document/10558658
856 4 _ |u https://juser.fz-juelich.de/record/1028722/files/QUBOvsPUBOISCAS2024.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028722/files/QUBOvsPUBOISCAS2024.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028722/files/QUBOvsPUBOISCAS2024.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028722/files/QUBOvsPUBOISCAS2024.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028722/files/QUBOvsPUBOISCAS2024.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1028722
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190961
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174220
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)188725
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)188145
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 2
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21