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Abstract—Ising solvers offer a promising physics-based ap-
proach to tackle the challenging class of combinatorial optimiza-
tion problems. However, typical solvers operate in a quadratic
energy space, having only pair-wise coupling elements which
already dominate area and energy. We show that such quadra-
tization can cause severe problems: increased dimensionality, a
rugged search landscape, and misalignment with the original
objective function. Here, we design and quantify a higher-order
Hopfield optimization solver, with 28nm CMOS technology and
memristive couplings for lower area and energy computations.
We combine algorithmic and circuit analysis to show quantitative
advantages over quadratic Ising Machines (IM)s, yielding 48x and
72x reduction in time-to-solution (TTS) and energy-to-solution
(ETS) respectively for Boolean satisfiability problems of 150
variables, with favorable scaling.

Index Terms—Optimization, Hopfield neural network, Ising
machine, Boolean satisfiability

I. INTRODUCTION

With diminishing performance gains from CMOS in tra-
ditional hardware, alternative mechanisms to deliver high-
performance, particularly for challenging (NP-hard) optimiza-
tion problems has growing importance. A variety of physi-
cal systems designed to accelerate intractable combinatorial
optimization has attracted recent attention, in many cases
implementing a quadratic Ising solver in a novel computing
substrate such as superconductor-based quantum annealing,
optics, CMOS-based coupled oscillators, etc [1]–[8].

An Ising-based solver typically maps the desired optimization
problem into a quadratic energy function to be minimized.
Quadratic terms represent pair-wise interactions, which are
typically easy to implement in a physical system, such as with
resistive or capacitive couplings, while higher-order (3-body
or higher) are more challenging. Numerous approaches exist
for conversion of an arbitrary target objective function into
quadratic form (so called QUBO: Quadratic Unconstrained
Binary Optimization). However, it is shown here that a
quadratic-only solver is severely disadvantaged compared to a
solver supporting higher-order interactions (so called PUBO:
Polynomial Unconstrained Binary Optimization). For example,
there are naturally cubic terms in the case of 3-SAT problems.
Quadratization requires the introduction of additional auxiliary
variables, typically much more than the original problem
variables, leading to an exponentially increased search space.
The new search space may also have additional ruggedness
that hinders a solver, as will be illustrated later.

In the present work, we utilized 3-SAT optimization problems
as representative for our proposed PUBO implementation. We
chose 3-SAT because it is NP-Complete and has widespread
applications [9]–[11].

This paper is structured as follows: Section II gives a
brief introduction to Hopfield Neural Networks and 3-SAT.
Section III compares QUBO and PUBO algorithms and
highlights the advantages of the latter through novel energy
landscape analysis. Finally, in Section IV, we present hardware
circuit designs supporting both algorithms, enabling quantitative
comparisons of key metrics TTS and ETS.

II. BACKGROUND AND MOTIVATION

Hopfield Neural Networks (HNNs), originally proposed by
J. J. Hopfield in 1982 [12], are a type of recurrent neural
network, the dynamics of which is governed by an overall
energy function, as in Eq. 1. Just as in physical systems, the
network evolves to minimize this energy, leading to a neuron
update rule proportional to the negative energy gradient with
respect to each dynamical neuron.

E({s}) = −1

2

∑
⟨ij⟩

wijsisj +
∑
i

bisi, si ∈ {−1, 1} (1)

Ising Machines (IM) operate based on a Hamiltonian, a
mathematical description of the energy of a physical system.
In the context of IMs, the Hamiltonian represents the problem
to be solved. It consists of two key components: the ”spins”
representing the variables in the problem, and their interactions
which are quantified as coupling strengths (manifesting similar
to HNN eq. 1). By manipulating these spins, IMs seek the
lowest energy state of the system, which corresponds to the
optimal solution for the given problem.

Satisfiability problems are typically represented in conjunc-
tive normal form (CNF) as shown in eq. 2. The goal is to find
input values that satisfy the Boolean function, making it true.
In k-SAT, ’k’ represents the maximum number of literals in
a SAT clause (eq. 2). Each clause, such as (xi ∨ ¬xj ∨ xk),
consists of positive xi and negative ¬xj literals.

F (x1, . . . , xN ) = (xi∨¬xj ∨xk)∧ (xa∨xb∨¬xc)∧ . . . (2)

SAT solvers can be exact or non-exact. Exact solvers, like
DPLL and CDCL [13]–[17], verify SAT problem satisfiability
or unsatisfiability. Non-exact solvers, such as SLS algorithms,
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Figure 1: Left: QUBO HNN that utilizes memristors to store synapse weights
in conductance to perform VMM. Right: PUBO HNN with support for cubic
interactions. N is number of variables (nvar)

use heuristics and random assignments for local search,
including variable flips. Examples include QUBO IMs/HNNs,
PUBO HNNs, and others relying on the make and break
evaluation such as WalkSAT, GSAT, and probSAT [18], [19].

Recent advancements in non-volatile analog memory tech-
nologies [20], [21], particularly 2-terminal memristive devices
[22], [23], have made mixed-signal implementations of certain
computing primitives increasingly attractive due to their low
area footprint, monolithic 3D potential, and multi-bit capacity.
Furthermore, a cross-bar array of memristive devices can
store coupling matrices and efficiently perform vector-matrix
multiplications (VMM), as needed for both QUBO (2D matrix)
and PUBO (3D tensor), allowing for computing-in-memory
(CIM), as illustrated in Fig. 1.

III. COMPARING QUADRATIC AND HIGHER-ORDER SOLVERS
AND ENERGY LANDSCAPES

This section compares quadratic (QUBO) and higher-order
(PUBO) solvers in terms of optimized algorithms, the solution
space that must be navigated, and introduces some novel
techniques for visualization. Performance is compared quantita-
tively, and 3-SAT problems are used for concrete analysis . The
development and testing of algorithms necessitates adaptability
while considering hardware compatibility. To ensure a fair
comparison, both algorithms underwent in-depth optimization.
A. QUBO

Quadratization of higher-order problems, such as 3-SAT,
typically involve substituting products of variables xi, xj

with a new auxiliary variable y and introducing a constraint
to maintain this substitution, converted into a penalty term
added to the objective function (Alg. 1). A penalty term,
initially introduced by Rosenberg [24], emerged as highly
effective, especially when combined with stochastic group
parallel updates. In essence, a QUBO HNN is governed by an
energy function:

E({s}) =
∑
⟨ij⟩

wijsisj +
∑
i

bisi + c;

{
{s} = {x} ∪ {y}
s ∈ {0, 1}

(3)

This function comprises quadratic terms, linear terms (biases),
and a constant. While the resulting QUBO mapping is indeed
quadratic, it exhibits high sparsity since the auxiliary variables
(y) only couple to the original variables (x). This sparsity pro-
vides an opportunity for parallel updates within the algorithm,
employing simulated annealing to overcome barriers.

Algorithm 1 Quadratizing a 3-SAT with a Rosenberg penalty
Require: 3-SAT problem in CNF

//example (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4)
Convert dissafisfiability ← Safisfiability (negating)
//example (x1 ∧ ¬x2 ∧ ¬x3) ∨ (¬x1 ∧ ¬x3 ∧ ¬x4)
Unroll each clause into penalty
//example (x1(1− x2)(1− x3)) + ((1− x1)(1− x3)(1− x4))
Substitute the product of two variables in cubic term with aux variable
//example (y1(1−x3))+ (y2(1−x4)) : x1(1−x2) = y1, (1−x1)(1−
x3) = y2
Add penalty for each auxiliary equality constraint
//example (y1(1−x3))+(y2(1−x4))+P (x1(1−x2)−2x1y1−2(1−
x2)y1+3y1)+P ((1−x1)(1−x3)−2(1−x1)y2−2(1−x3)y2+3y2) : P
is a parameter

To implement stochastic parallel updates, we randomly
distribute neurons into a desired number of groups at each
step, then update neurons of each group sequentially. This
follows an annealing schedule starting at high temperature to
zero. We found stochastic parallel updates significantly improve
convergence time of QUBO HNN for 3-SAT compared with
all single-neuron update algorithms tested.

A detailed analysis of the QUBO HNN’s behavior revealed
cases where the solver traversed through a satisfiability con-
dition (i.e. 3-SAT problem solved) despite the QUBO energy
not reaching zero, leading to a departure from the solution. To
address this challenge, we introduced an additional component,
the SAT checker, to monitor the solver’s evolution cycle and
halt the search upon finding satisfiability. This enhancement
significantly accelerated the QUBO HNN (Fig. 5a), which we
implemented using a cross-bar array with variables at word-line
and clauses at bit-line, the clause is satisfied when the current
is above a threshold representing zero.
B. PUBO

To natively accommodate the energy function of 3-SAT
within the Hopfield Neural Network (HNN), cubic interactions
must be supported. The conversion of 3-SAT into this function
closely resembles Alg. 1, albeit without variable substitution,
resulting in the following equation:

E({s}) =
∑
⟨ijk⟩

wijksisjsk +
∑
⟨ij⟩

wijsisj +
∑
i

bisi + c; s ∈ {0, 1} (4)

Adhering to the classical HNN update rule of one neuron per
step was observed to give quickest convergence and superior
scaling compared to our best QUBO (see Fig. 5a). However,
top performance was found by implementing a modified update
rule inspired by Aramon, et al. [8] that increases the probability
of flips. This starts by computing state changes for all spins,
selects a flip if it exists (focus), if not it adds ∆E+ = Eoffset
to all gradients to induce a flip on the next step (offset), and
if a flip is found set ∆E = 0.

C. Landscape Advantages of PUBO over QUBO

The degradation of the QUBO version of a higher-order
problem is attributed to the substitution of original variables
x and augmenting the landscape with auxiliary variables y.
This process not only increases exponentially the search space
(Fig. 2a), but also the new landscape is not faithful to the
native space (see Fig. 2b), whereby reducing QUBO energy
does not perfectly correlate to solving more SAT clauses. An
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Figure 2: a. Search space vs problem size for quadratized and native space
for hard 3-SAT random instances with number of clauses 4.23× number
of variables, resulting in 2N and 25.23 size of search space for native and
quadratized representation respectively. b. Histogram of running 3-SAT QUBO
solver, showing energy reduction (−∆E) does not correlate well with satisfying
more clauses ∆SAT .
intrinsic property of the 3-SAT problem is the degeneracy of the
configuration space, that it is possible to group configurations
into large valleys based on their connectivity with each other
by zero-energy-change bit-flips (e.g. Fig. 3 left), an HNN
solver will diffuse through the optimization landscape until a
downward path is found, or a barrier at the valley border is
overcome. When mapped to a QUBO problem g(x,y) with
the Rosenberg penalty,

f(x) = min
y

g(x,y) , (5)

the QUBO landscape increases the ruggedness (e.g. Fig. 3
right) of the original PUBO manifold due to auxiliary variables
y for each fixed configuration x. To numerically estimate

Figure 3: The deformation of the native (PUBO) energy landscape f(x) when
reformulated as a QUBO problem g(x,y) with the penalty quadratization of
Eq. (5). Every vertex denotes a PUBO/QUBO configuration, edges represent
bit-flip neighbours. xa and xb have different optimal ya and yb, while yb is
optimal for both xb and xc. An unstable point xc in PUBO can become a
saddle in QUBO.

degenerate properties in PUBO/QUBO landscapes, we employ
the Generalized Wang-Landau algorithm [25] to sample the
lowest 200 degenerate valleys for 100 instances from SATLIB
(uf50-[901,1000]). Following sampling, we discard valleys with
zero-barrier exits (saddle points). For each remaining local min-
imum in a sampled PUBO degenerate valley, denoted as {x}i,
we assess the potential for single bit-flip moves xi

a → xi
b in the

QUBO space (in PUBO there is a zero barrier EPUBO(x
i
a) =

EPUBO(x
i
b)) through the number Ny of combinations of

auxiliary variables y satisfying EQUBO(x
i
a,y) = EPUBO(x

i
a).

If a barrier ∆E(y) = EQUBO(x
i
b,y) − EQUBO(x

i
a,y) is

overcome with probability p = 1
Ny

∑
y exp (−∆E(y)/T ),

then we consider xa and xb connected in QUBO. Based on
the resulting QUBO connectivity, we count the QUBO valley
entropies s, i.e. the number of configurations exp {Ns} within
a valley, and complexities Σ(s), i.e. the number (exp {NΣ(s)})
of valleys of size s, at different temperatures (see Fig. 4).
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Figure 4: Sampled histogram of local minima valley complexity Σ(s) vs valley
entropy s for the PUBO and Rosenberg QUBO landscapes, averaged over
100 SATLIB instances uf50-[901,1000]. Penalty hyperparameter for QUBO is
P = 0.5. T is temperature of QUBO connectivity method.

At small temperatures the QUBO landscape is very rugged,
i.e. has more disconnected local minima valleys compared to
PUBO, which results in higher rejection of local moves and
thus drastic performance slow-down. At higher temperature
the QUBO energy barriers can of course be overcome and the
entropic barriers of the PUBO landscape are restored. How-
ever, low-temperature performance determines convergence to
solutions. The above results reinforce both quantitatively and
conceptually the challenges of a quadratic-limited solver.

IV. 28NM QUBO AND PUBO HARDWARE DESIGNS

For quantitative analysis and comparison, we designed the
needed hardware blocks for both QUBO and PUBO memristor-
based solvers. The hardware must offer full flexibility for
current and future algorithm development, yet provide realistic
performance metrics. Circuit elements at the device level were
designed, optimized and simulated with respect to energy
consumption and time requirements based on a TSMC 28nm
CMOS technology. The central block is the VMM, which
is built as a memristor-based CIM architecture [26]. The
needed periphery includes driver circuits to activate word
lines, current-voltage converters (transimpedance amplifiers,
TIAs [27]), DACs [28] for additive noise signals in annealing,
comparators [29], digital random number generators (PRNGS)
[30] and custom 1-out-of-n encoders (n/2-out-of-n encoders)
for updating state vectors.

Circuit performance is expected to be dominated by an
extended interconnect, thus it is first necessary to have an area
planning of the individual components, after which an estimate
of expected interconnect lengths of individual modules can
be made. The interconnect lengths are then converted into
effective capacitances and integrated into the Spectre circuit
simulation model. From simulation, realistic values for delays
and switching energies are obtained.

Fig. 6 shows a designed floor plan of true-scale
PUBO/QUBO implementations for 20-variable 3-SAT prob-
lems. Transient simulations of realistic state vector sequences
provided numbers for aggregated power and timing numbers
which were re-scaled to average energy contributions per cycle.
Fig. 7 shows the corresponding distribution of the energy
contributions to the individual sub-operations.

Scaling PUBO/QUBO to problems with larger numbers of
variables poses challenges for the hardware implementation.
First, the number of word lines (PUBO) grows with ∼ 1

2N(N−
1) which leads to highly asymmetric, elongated layouts for



50 100 150

103

104

105

106

107

108

50 100 150

10−6

10−5

10−4

10−3

10−2

50 100 150

10−9

10−8

10−7

10−6

10−5

10−4

10−3

QUBO, Parallel Updates

QUBO, Parallel + SAT Checker

PUBO

PUBO, focus+offset

Problem Size Problem Size Problem Size

a. TTS₉₉ in algorithmic steps b. TTS₉₉ (seconds) c. ETS₉₉ (joule)

Figure 5: (Lower is better) a. TTS in algorithmic steps. b. True TTS (seconds) after circuit layout. c. ETS (Joules) for 0.99 success rate for 80 instances at
each size. Curves are median values for each size.

Noise-
DAC

TIA
x40

COMP
x20

St
at

e 
&

1
-f

ro
m

-n
A

N
D

 +
 D

R
V

+ 
ro

u
�

n
g

PRNG

PRNG 32

TIA 
x 

222

COMP. 
x 111

n/2-from-n (PRNG128)

ro
u
�

n
g

st
at

e

Noise-DAC

PRNG 32

222 BL
x 

111 WL
40 BL

x 
210 WL

VMM

annealing

ADC

state 
update

90 µm

3
1

 µ
m

DRV

WL0

WL1

150nm

70nm

SL0 BL0 SL1 BL1

2
8

0
 n

m

405 nm

G

Cell

G

WL0

1
T1

R

SL0

BL0

G

WL1

Figure 6: Floor plan of PUBO (left) and QUBO (right) for 20-variable 3-
SAT problems with true-scaled circuit blocks based on 28 nm CMOS. Areas
colored gray represent weight matrices, areas colored blue represent digital
components, and areas colored ocher are analog/mixed-signal components.

WL ac�va�on

select N/2-from-N 

PRNG logic
9%

Total: 3.24 pJ Tcycle = 1.44 nsTotal: 1.32 pJ Tcycle = 1.95 ns

comparators

WL 
ac�va�on

TIA ac�va�on

RRAM current

other (2%)

select 1-from-N

PRNG clock

PRNG REG

PRNG logic

noise current (5%)

11%

19%

16%

11%

7%
8%

13% 7%
RRAM current

21%

other
(1%)

TIA ac�va�on

13%

4%

comparators 12% noise current 12% 

14%

PRNG clock
6%

PRNG REG
8%PUBO QUBO

Figure 7: Energy total and breakdown for the various components in the PUBO
(left) and QUBO (right) solvers.

&

&

…

½
·N

·(
N

-1
)

N

A
rr

ay

TIA & COMP

WL

BL

N
co

l
x 

n
W

Lencoder

par�al 
states

fu
ll 

st
at

e 
ve

ct
o

r

a. c.

par�al 
states

full state 
vector

full state 
vector

…

WL

N

C
EN

C
W

L

BL

BL

TI
A

 &
 C

O
M

P

T
&
C

REG,PRNG,…
1-from- Ncol

D
A

C

P
R

N
G

ar
ra

y

WL

WL

full state 
vector

b.

�le

�le

�le

state, update,
1-from-N�le

Figure 8: a. Conventional array periphery for PUBO, b. Configurable encoder
(CENC) replacing the AND-encoder. True scale layout for N = 150 and
Ncol = 19, c. Tile architecture and interconnect.
N ≫ 20. The gradient matrix (for well-randomized problems)
contains many rows in which weights are zero. With these
aspects in mind, we developed a tiling architecture to support
scaling. Instead of encoding all possible pairwise products
of variables (see Fig. 8a), the encoder array is replaced by
a memristor-based Configurable Encoder (CENC) [31] (see
Fig. 8). The CENC receives the complete state vector for input.
For each horizontal bit line of the CENC block, a word line
is now provided in the gradient array. The CENC array is

programmed so that only active lines of the gradient matrix
(associated to specific state bit combinations) are represented
by corresponding patterns in the CENC.

The circuit components designed for the smaller 20-var
implementation are utilized in the fully scalable CENC circuit.
For a rectangular, fully filled layout of a tile, nWL = 400 with
variable number of CENC inputs proves to be favorable. Each
tile can thus accommodate sub-problems of larger problems.
For given 3-SAT problems from the SATLIB, an upper bound of
possible state variables is obtained whose gradient can be fully
mapped with a restricted and fixed number of word lines. In
particular, for nWL = 400, Ncol = 19 state variables are obtained.
An N-variable problem is thus mapped to Ntile = ⌈N/Ncol⌉
tiles (see Fig. 8c). A separate unit holds the state vector and
the update logic, distributes the state vector as well as control
signals to the tiles and collects the partial state vectors and
other control signals from the tiles. Again, average energy and
timing values are obtained from circuit simulation of the tiled
architecture and translated into true TTS and ETS values (see
Fig. 5(b and c)).

The quantitative hardware designs of QUBO and PUBO
implementations are now combined with the algorithmic
explorations of Section III. We see (Fig. 7) that PUBO cycles
consume 2.45× less energy, but take 1.35× longer than
QUBO. However, Section III showed a significant algorithmic
advantage for PUBO, reducing the needed cycles to converge
to solutions. This PUBO advantage scales with problem size
(Fig. 5a.), and our hardware analysis here quantifies the circuit
costs associated with the problem scaling. We thus combine
both the hardware and algorithmic analysis in Figs. 5b and c
to yield time-to-solution and energy-to-solution numbers. Our
analsyis shows a substantial and growing advantage of PUBO,
with 48× and 72× improved speed and energy, respectively,
over QUBO at the largest problem sizes. This performance gap
is expected to continue for larger problems, which is future
work.

V. CONCLUSION

In this work we developed a memristor-based hardware
implementation of a higher-order HNN (i.e. PUBO) showing
significantly reduced time and energy consumption compared to
more standard quadratic IM (QUBO). We separately quantified
the gains from both the hardware and algorithmic aspects. We
showed operating in the higher-order search space reduced
variables (exponentially smaller search space), provides a more
faithful energy landscape to the original problem landscape,
and can be smoother for the solver to explore.
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[10] M. Stojadinović, “Air traffic controller shift scheduling by reduction to
csp, sat and sat-related problems,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 8656 LNCS, pp. 886–902, 2014.

[11] F. Massacci, L. M. J. of Automated Reasoning, and undefined 2000,
“Logical cryptanalysis as a sat problem,” disi.unitn.it, vol. 24, pp. 165–203,
2000.

[12] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities.” Proceedings of the National Academy
of Sciences, vol. 79, no. 8, p. 2554–2558, Apr 1982.

[13] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” Journal of the ACM (JACM), vol. 7, 1960.

[14] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem-proving,” Communications of the ACM, vol. 5, 1962.

[15] R. J. Bayardo and R. C. Schrag, “Using csp look-back techniques to
solve real-world sat instances,” 1997.

[16] J. P. M. Silva and K. A. Sakallah, “Grasp - a new search algorithm for
satisfiability,” 1996.

[17] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient sat solver,” 2001.

[18] B. Selman, H. A. Kautz, and B. Cohen, “Noise strategies for improving
local search,” vol. 1, 1994.

[19] A. Balint and U. Schöning, “Choosing probability distributions for
stochastic local search and the role of make versus break,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 7317 LNCS, pp.
16–29, 2012.

[20] Z. Wang, H. Wu, G. W. Burr, C. S. Hwang, K. L. Wang, Q. Xia, and
J. J. Yang, “Resistive switching materials for information processing,”
Nature Reviews Materials, vol. 5, no. 3, pp. 173–195, 2020.

[21] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
nanotechnology, vol. 15, no. 7, pp. 529–544, 2020.

[22] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature nanotechnology, vol. 8, no. 1, pp. 13–24, 2013.

[23] M. Rao, H. Tang, J. Wu, W. Song, M. Zhang, W. Yin, Y. Zhuo, F. Kiani,
B. Chen, X. Jiang et al., “Thousands of conductance levels in memristors
integrated on cmos,” Nature, vol. 615, no. 7954, pp. 823–829, 2023.

[24] I. G. Rosenberg, “Reduction of bivalent maximization to the quadratic
case,” Cahiers du Centre d’Etudes de Recherche Opérationnelle, vol. 17,
pp. 71–79, 1975.

[25] A. Barbu and S. Zhu, Monte Carlo Methods. Springer Nature Singapore,
2020.

[26] C. Li, Y. Li, H. Jiang, W. Song, P. Lin, Z. Wang, J. J. Yang, Q. Xia,
M. Hu, E. Montgomery, J. Zhang, N. Davila, C. E. Graves, Z. Li,
J. P. Strachan, R. S. Williams, N. Ge, M. Barnell, and Q. Wu, “Large
memristor crossbars for analog computing,” vol. 2018-May, 2018.

[27] M. Atef and H. Zimmermann, “10gbit/s 2mw inductorless transimpedance
amplifier,” in 2012 IEEE International Symposium on Circuits and
Systems (ISCAS), 2012, pp. 1728–1731.

[28] D. Karadimas, M. Papamichail, and K. Efstathiou, “A most-only r-2r
ladder-based architecture for high linearity dacs,” 2008.

[29] M. Al-Qadasi, A. Alshehri, A. S. Almansouri, T. Al-Attar, and H. Fari-
borzi, “A high speed dynamic strongarm latch comparator,” vol. 2018-
August, 2019.

[30] G. Marsaglia, “Xorshift rngs,” Journal of Statistical Software, vol. 8, pp.
1–6, 2003.

[31] T. Bhattacharya, G. H. Hutchinson, G. Pedretti, X. Sheng, J. Ignowski,
T. V. Vaerenbergh, R. Beausoleil, J. P. Strachan, and D. B. Strukov,
“Computing high-degree polynomial gradients in memory,” 2024.
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