001028733 001__ 1028733
001028733 005__ 20250220092007.0
001028733 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04781
001028733 037__ $$aFZJ-2024-04781
001028733 041__ $$aEnglish
001028733 1001_ $$0P:(DE-Juel1)174486$$aSiegel, Sebastian$$b0$$eCorresponding author$$ufzj
001028733 1112_ $$aInternational Conference on Neuromorphic Computing and Engineering$$cAachen$$d2024-06-03 - 2024-06-06$$gICNCE$$wFed Rep Germany
001028733 245__ $$aMemSpikingTM: Neuromorphic sequence learning with memristive in-memory computing - from algorithm to hardware demonstration
001028733 260__ $$c2024
001028733 3367_ $$033$$2EndNote$$aConference Paper
001028733 3367_ $$2BibTeX$$aINPROCEEDINGS
001028733 3367_ $$2DRIVER$$aconferenceObject
001028733 3367_ $$2ORCID$$aCONFERENCE_POSTER
001028733 3367_ $$2DataCite$$aOutput Types/Conference Poster
001028733 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1738828643_24857$$xAfter Call
001028733 520__ $$aInformation processing in the neo-cortex happens in a sequential manner and sequence learning is considered a key functionality of the human brain. Even though there are machine learning solutions to these problems, they, unlike the biological brain, often require large amounts of training data and suffer from a high energy consumption. Therefore, in this project we take the neuromorphic approach of bringing the biological principles of sparse neural activity and in-memory computing into electronic hardware. Thereby, our goal is to achieve a robust and energy-efficient solution for sequence learning.The Hierarchical Temporal Memory[1] concept and its biologically plausible version, SpikingTM[2], describe a possible algorithm for sequence learning in the neo-cortex. We prove that this algorithm can operate with memristive synapses[3]. Memristive devices are an emerging non-volatile memory and a prominent candidate for in-memory computing substrates. In order to fully leverage the possibilities of these devices, we adapt the SpikingTM algorithm and create a complete analog / mixed signal system model around a synaptic array of memristive devices[4]. We demonstrate sequence learning by sparse neural activity and showcase that the use of memristive devices leads to a significant gain of energy efficiency. Lastly, we validate the system with real memristive synaptic arrays on a custom nanometer CMOS demonstrator chip by performing complex sequence learning tasks with our memristive algorithm (MemSpikingTM) on hardware[5].This project shows the complete neuromorphic journey from a bio-plausible algorithm for the brain functionality over a hardware-aware adaption for emerging memristive device technology and a complete system model to a successful hardware demonstration. We showcase that by combining the biological principles of sparse activity and connectivity with a memristive in-memory computing substrate, we can fulfil the promise of robust brain-like functionality and energy efficiency. [1] S. Ahmad and J. Hawkins, arXiv preprint arXiv:1503.07469,2015[2] Y. Bouhadjar et al., PLOS Computational Biology, 18.6, 2022[3] Y. Bouhadjar et al., Neuromorph. Comput. Eng., 3.3, 2023[4] S. Siegel et al., Neuromorph. Comput. Eng., 3.2, 2023[5] S. Siegel et al., Proceedings of the 2023 NICE Conference, 2023
001028733 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001028733 7001_ $$0P:(DE-Juel1)176778$$aBouhadjar, Younes$$b1$$ufzj
001028733 7001_ $$0P:(DE-Juel1)177689$$aZiegler, Tobias$$b2
001028733 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3$$ufzj
001028733 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b4$$ufzj
001028733 7001_ $$0P:(DE-HGF)0$$aWouters, Dirk$$b5
001028733 8564_ $$uhttps://juser.fz-juelich.de/record/1028733/files/Poster_ICNCE_2024.pdf$$yOpenAccess
001028733 8564_ $$uhttps://juser.fz-juelich.de/record/1028733/files/Poster_ICNCE_2024.gif?subformat=icon$$xicon$$yOpenAccess
001028733 8564_ $$uhttps://juser.fz-juelich.de/record/1028733/files/Poster_ICNCE_2024.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001028733 8564_ $$uhttps://juser.fz-juelich.de/record/1028733/files/Poster_ICNCE_2024.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001028733 8564_ $$uhttps://juser.fz-juelich.de/record/1028733/files/Poster_ICNCE_2024.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001028733 909CO $$ooai:juser.fz-juelich.de:1028733$$pdriver$$pVDB$$popen_access$$popenaire
001028733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174486$$aForschungszentrum Jülich$$b0$$kFZJ
001028733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176778$$aForschungszentrum Jülich$$b1$$kFZJ
001028733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b3$$kFZJ
001028733 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b4$$kFZJ
001028733 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001028733 9141_ $$y2024
001028733 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028733 920__ $$lno
001028733 9201_ $$0I:(DE-Juel1)PGI-14-20210412$$kPGI-14$$lNeuromorphic Compute Nodes$$x0
001028733 980__ $$aposter
001028733 980__ $$aVDB
001028733 980__ $$aUNRESTRICTED
001028733 980__ $$aI:(DE-Juel1)PGI-14-20210412
001028733 9801_ $$aFullTexts