001     1028733
005     20250220092007.0
024 7 _ |a 10.34734/FZJ-2024-04781
|2 datacite_doi
037 _ _ |a FZJ-2024-04781
041 _ _ |a English
100 1 _ |a Siegel, Sebastian
|0 P:(DE-Juel1)174486
|b 0
|e Corresponding author
|u fzj
111 2 _ |a International Conference on Neuromorphic Computing and Engineering
|g ICNCE
|c Aachen
|d 2024-06-03 - 2024-06-06
|w Fed Rep Germany
245 _ _ |a MemSpikingTM: Neuromorphic sequence learning with memristive in-memory computing - from algorithm to hardware demonstration
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1738828643_24857
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Information processing in the neo-cortex happens in a sequential manner and sequence learning is considered a key functionality of the human brain. Even though there are machine learning solutions to these problems, they, unlike the biological brain, often require large amounts of training data and suffer from a high energy consumption. Therefore, in this project we take the neuromorphic approach of bringing the biological principles of sparse neural activity and in-memory computing into electronic hardware. Thereby, our goal is to achieve a robust and energy-efficient solution for sequence learning.The Hierarchical Temporal Memory[1] concept and its biologically plausible version, SpikingTM[2], describe a possible algorithm for sequence learning in the neo-cortex. We prove that this algorithm can operate with memristive synapses[3]. Memristive devices are an emerging non-volatile memory and a prominent candidate for in-memory computing substrates. In order to fully leverage the possibilities of these devices, we adapt the SpikingTM algorithm and create a complete analog / mixed signal system model around a synaptic array of memristive devices[4]. We demonstrate sequence learning by sparse neural activity and showcase that the use of memristive devices leads to a significant gain of energy efficiency. Lastly, we validate the system with real memristive synaptic arrays on a custom nanometer CMOS demonstrator chip by performing complex sequence learning tasks with our memristive algorithm (MemSpikingTM) on hardware[5].This project shows the complete neuromorphic journey from a bio-plausible algorithm for the brain functionality over a hardware-aware adaption for emerging memristive device technology and a complete system model to a successful hardware demonstration. We showcase that by combining the biological principles of sparse activity and connectivity with a memristive in-memory computing substrate, we can fulfil the promise of robust brain-like functionality and energy efficiency. [1] S. Ahmad and J. Hawkins, arXiv preprint arXiv:1503.07469,2015[2] Y. Bouhadjar et al., PLOS Computational Biology, 18.6, 2022[3] Y. Bouhadjar et al., Neuromorph. Comput. Eng., 3.3, 2023[4] S. Siegel et al., Neuromorph. Comput. Eng., 3.2, 2023[5] S. Siegel et al., Proceedings of the 2023 NICE Conference, 2023
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
700 1 _ |a Bouhadjar, Younes
|0 P:(DE-Juel1)176778
|b 1
|u fzj
700 1 _ |a Ziegler, Tobias
|0 P:(DE-Juel1)177689
|b 2
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 3
|u fzj
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 4
|u fzj
700 1 _ |a Wouters, Dirk
|0 P:(DE-HGF)0
|b 5
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1028733/files/Poster_ICNCE_2024.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1028733/files/Poster_ICNCE_2024.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1028733/files/Poster_ICNCE_2024.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1028733/files/Poster_ICNCE_2024.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1028733/files/Poster_ICNCE_2024.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1028733
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174486
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130620
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)PGI-14-20210412
|k PGI-14
|l Neuromorphic Compute Nodes
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-14-20210412
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21