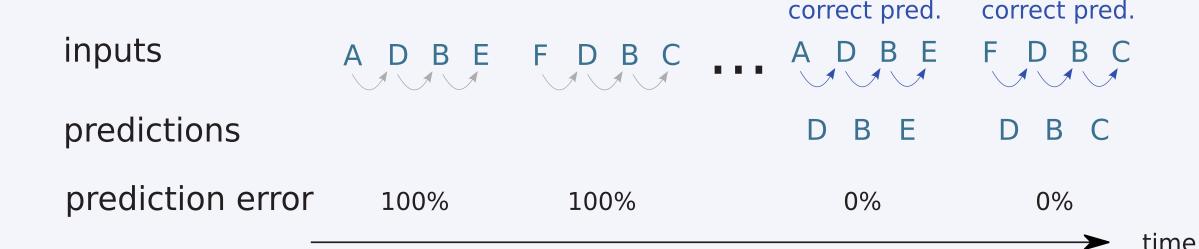
MemSpikingTM

Neuromorphic sequence learning with memristive in-memory computing -- from algorithm to hardware demonstration --

Sebastian Siegel¹, Younes Bouhadjar², Tobias Ziegler, Tom Tezlaff³, Rainer Waser^{4,5}, Regina Dittmann⁵, and Dirk J. Wouters⁴ (1) PGI-14, (2) PGI-15, (3) IAS-6, (5) PGI-7 Forschungszentrum Jülich GmbH, Jülich, Germany (4) IWE2, RWTH Aachen University, Aachen, Germany

Sequence learning is a core functionality of the human brain

Task: Learn different sequences upon repeated presentation and predict next sequence elements



Context-learning: Not only immediate history is important => High-order sequences

Spiking Temporal Memory^[1]

Bio-plausible version of the Hierarchical Temporal Memory^[2] algorithm is a model for sequence learning in the brain

- local Hebbian synaptic plasticity & homeostasis
- leaky-integrate & fire (LIF) point neurons
- network simulations in NEST
- => prediction of high-order sequences
- => error detection
- => autonomous replay

Memristive synapses^[3]

Binary and gradual memristive dynamics suitable for SpikingTM algorithm

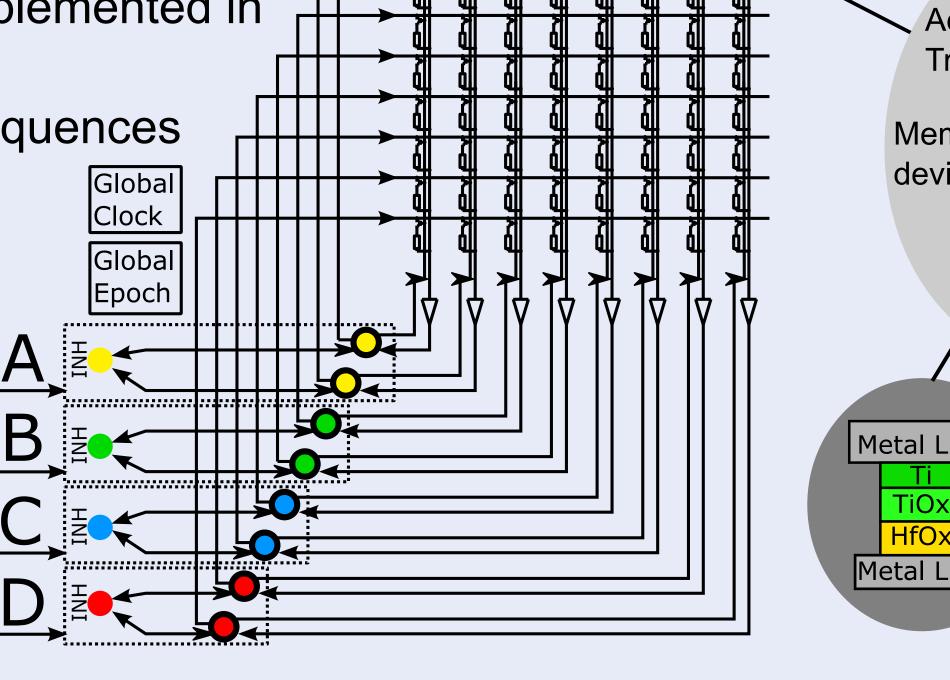


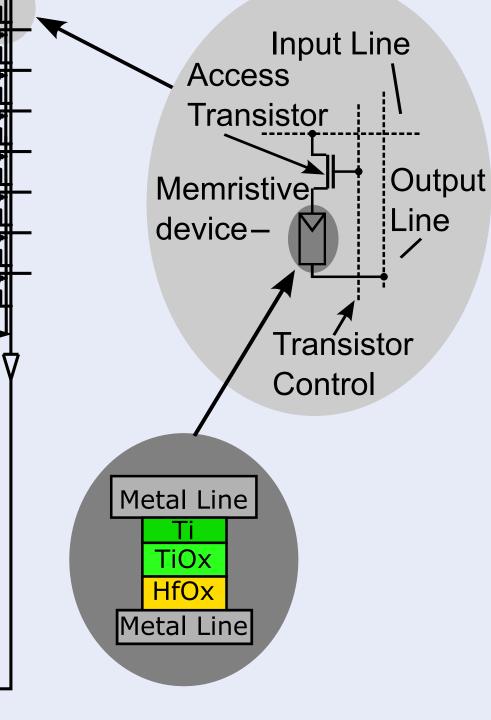
Hardware system model based on memristive array^[4]

Complete system model around a memristive crossbar array implemented in SPICE

Training of high-order sequences demonstrated

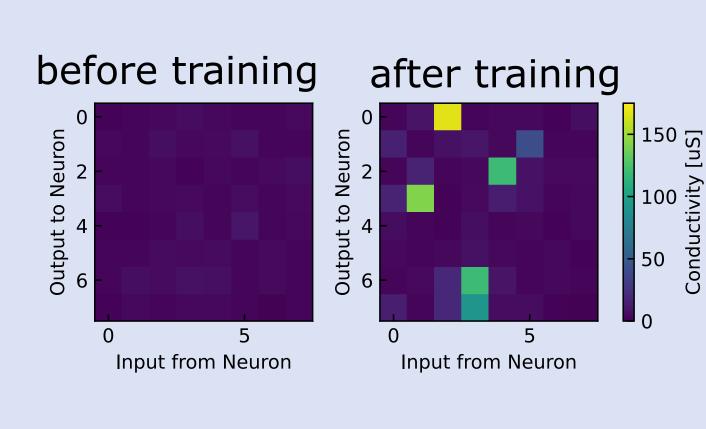
Neurons implemented as state machines perform sensing and generate read / update pulses



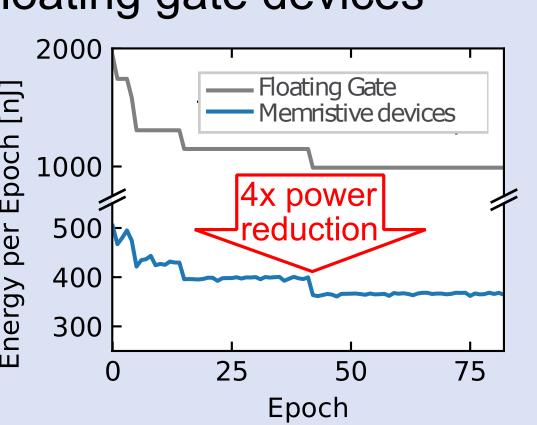


Energy efficiency

Analog synapses make full use of actiavtion and weight sparsity

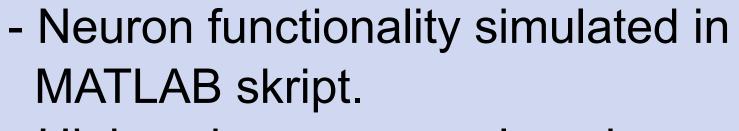


Memristive devices consume less power than floating gate devices

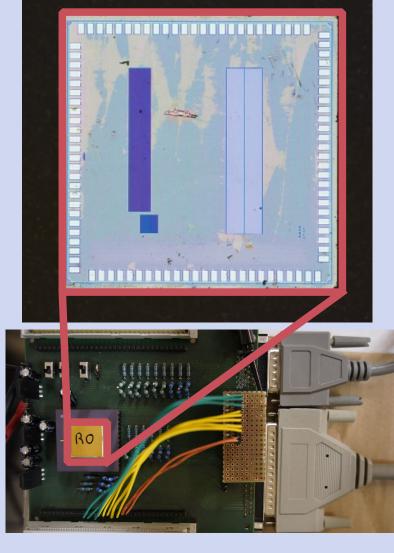


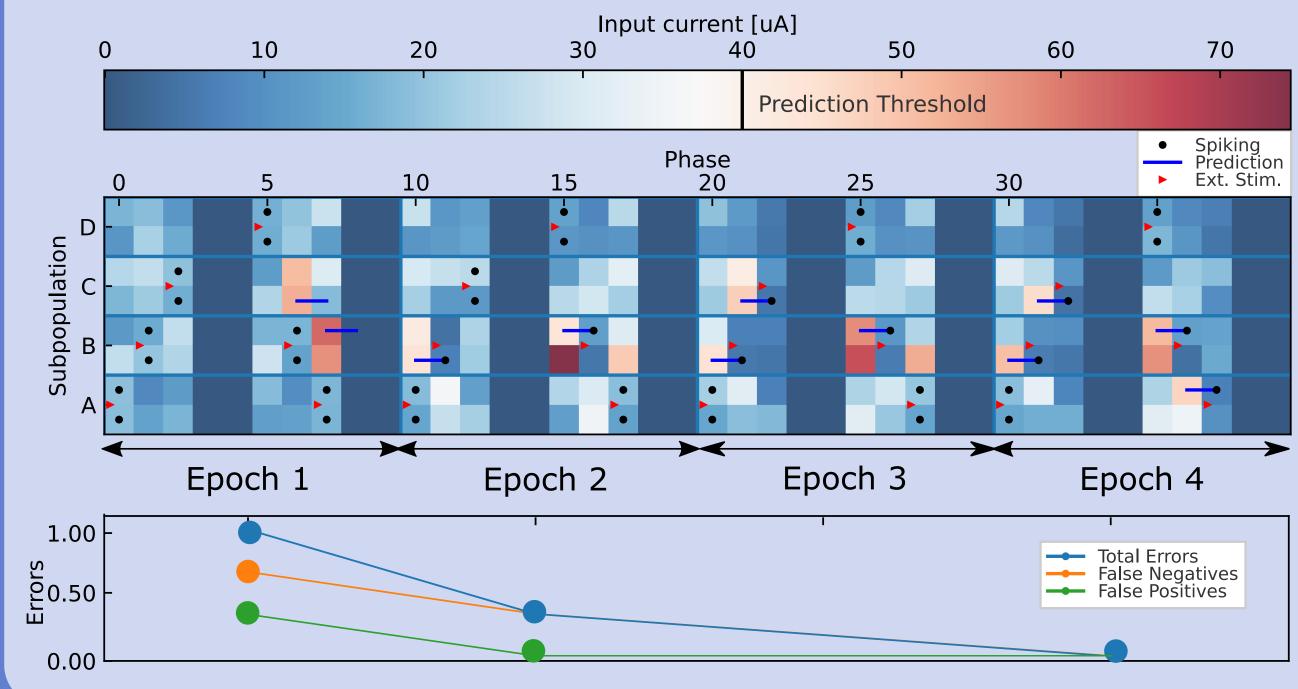
Hardware implementation^[5]

- Memristive 1T1R crossbar implemented on 130nm CMOS substrate.



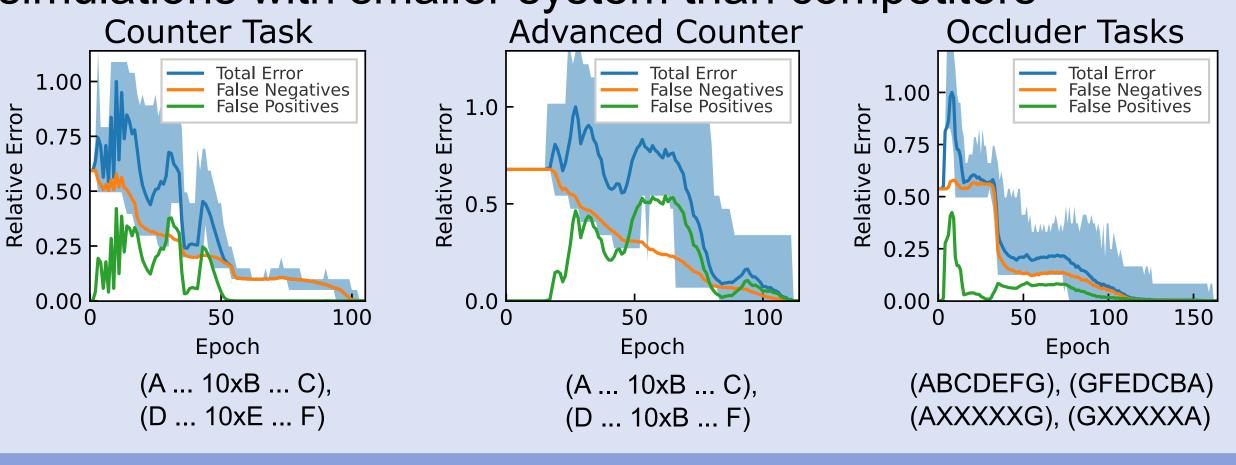
- High-order sequence learning successfully demonstrated with fabricated memristive crossbar





Large scale simulations

Sequence learning challenges solved in large scale simulations with smaller system than competitors



- [1] Bouhadjar, Y., Wouters, D. J., Diesmann, M., & Tetzlaff, T. (2022). Sequence learning, prediction, and replay in networks of spiking neurons. PLOS Computational Biology, 18(6), e1010233. [2] Ahmad, S., & Hawkins, J. (2015). Properties of sparse distributed representations and their application to hierarchical temporal memory. arXiv preprint arXiv:1503.07469.
- [3] Bouhadjar, Y., Siegel, S., Tetzlaff, T., Diesmann, M., Waser, R., & Wouters, D. J. (2023). Sequence learning in a spiking neuronal network with memristive synapses. Neuromorphic Computing and Engineering, 3(3), 034014.

[4] Siegel, S., Bouhadjar, Y., Tetzlaff, T., Waser, R., Dittmann, R., & Wouters, D. J. (2023). System model of neuromorphic sequence learning on a memristive crossbar array. Neuromorphic Computing and Engineering, 3(2), 024002. [5] Siegel, S., Ziegler, T., Bouhadjar, Y., Tetzlaff, T., Waser, R., Dittmann, R., & Wouters, D. (2023, April). Demonstration of neuromorphic sequence learning on a memristive array.

In Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference (pp. 108-114).