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3 Key Points 

Question Is antidepressant exposure associated with differential whole blood DNA 

methylation? 

 

Findings In this methylome-wide association study of 16,536 adults across Scotland, 

antidepressant exposure was significantly associated with hypermethylation at CpGs mapping 

to KANK1 and DGUOK-AS1. A methylation profile score trained on this sample was 

significantly associated with antidepressant exposure (pooled � [95%CI]=0.196 [0.105, 

0.288], p < 1x10-4) in a meta-analysis of external datasets. 

 

Meaning Antidepressant exposure is associated with hypermethylation at KANK1 and 

DGUOK-AS1, which have roles in mitochondrial metabolism and neurite outgrowth. If 

replicated in future studies, targeting these genes could inform the design of more effective 

and better tolerated treatments for depression. 
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Abstract 

Importance: Understanding antidepressant mechanisms could help design more effective 

and tolerated treatments.  

Objective: Identify DNA methylation (DNAm) changes associated with antidepressant 

exposure. 

Design: Case-control methylome-wide association studies (MWAS) of antidepressant 

exposure were performed from blood samples collected between 2006-2011 in Generation 

Scotland (GS). The summary statistics were tested for enrichment in specific tissues, gene 

ontologies and an independent MWAS in the Netherlands Study of Depression and Anxiety 

(NESDA). A methylation profile score (MPS) was derived and tested for its association with 

antidepressant exposure in eight independent cohorts, alongside prospective data from GS.  

Setting: Cohorts; GS, NESDA, FTC, SHIP-Trend, FOR2107, LBC1936, MARS-UniDep, 

ALSPAC, E-Risk, and NTR. 

Participants: Participants with DNAm data and self-report/prescription derived 

antidepressant exposure.  

Main Outcome(s) and Measure(s): Whole-blood DNAm levels were assayed by the 

EPIC/450K Illumina array (9 studies, Nexposed = 661, Nunexposed= 9,575) alongside MBD-Seq 

in NESDA (Nexposed= 398, Nunexposed= 414). Antidepressant exposure was measured by self-

report and/or antidepressant prescriptions.  

Results: The self-report MWAS (N = 16,536, Nexposed = 1,508, mean age = 48, 59% female) 

and the prescription-derived MWAS (N = 7,951, Nexposed = 861, mean age = 47, 59% female), 

found hypermethylation at seven and four DNAm sites (p < 9.42x10-8), respectively. The top 
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locus was cg26277237 (KANK1, pself-report= 9.3x10-13, pprescription = 6.1x10-3). The self-report 

MWAS found a differentially methylated region, mapping to DGUOK-AS1 (padj = 5.0x10-3) 

alongside significant enrichment for genes expressed in the amygdala, the “synaptic vesicle 

membrane” gene ontology and the top 1% of CpGs from the NESDA MWAS (OR = 1.39, p 

< 0.042). The MPS was associated with antidepressant exposure in meta-analysed data from 

external cohorts (Nstudies= 9, N = 10,236, Nexposed = 661, � � 0.196, p < 1x10-4). 

Conclusions and Relevance: Antidepressant exposure is associated with changes in DNAm 

across different cohorts. Further investigation into these changes could inform on new targets 

for antidepressant treatments.  
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Introduction  

Major Depressive Disorder (MDD) is predicted to become the leading cause of disability 

worldwide by 20301, partly due to the limitations of current treatments2. Although 

antidepressants are commonly prescribed effective treatments3, they prove to be ineffective in 

a high proportion of cases, with an estimated 40% of those presenting with MDD developing 

treatment-resistant depression4,5. Furthermore, many treatments are commonly accompanied 

by side effects, including weight changes, fatigue and sexual dysfunction2. There is a need for 

more effective and better-tolerated antidepressant treatments and to target existing treatments 

to those most likely to respond. Advances are hampered by poor mechanistic understanding 

of both MDD itself1,16,17 and how currently prescribed antidepressants lead to therapeutic 

effects9.   

 

The mechanism of currently prescribed antidepressants is incompletely understood. Initial 

theories surmised that their therapeutic effects were due to an increase in monoamine brain 

synaptic concentrations10. However, antidepressant treatment has a delayed onset for 

symptomatic improvement, which does not reflect the immediate effect on monoamine 

levels7. This casts doubt on the simple role of monoamines as a causal factor in MDD7–9, 

although other experimental paradigms continue to suggest their importance11. Another 

prominent theory of antidepressant action suggests that their therapeutic mechanism involves 

increasing synaptic remodelling12 and neuronal plasticity9,13.  The evidence for the effect of 

antidepressants on DNA methylation (DNAm) is growing14,15. In vitro studies found that the 
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antidepressant paroxetine interacted with DNA methyltransferase (DNMT), a key enzyme 

involved in DNAm16. Furthermore, studies of chronically stressed rodent models have found 

that stress-induced DNAm and behavioural changes are reversed through both antidepressant 

treatment17 and DNMT inhibitors18.  

 

DNAm, the addition of a methyl group at a cytosine-phosphate-guanine (CpG) site, regulates 

gene expression and impacts cellular function19,20. In 2022, Barbu et al.21 performed a 

methylome-wide association study (MWAS) of self-reported antidepressant exposure in a 

subset of participants in Generation Scotland (GS, N = 6,428) and the Netherlands Twin 

Register (NTR, N = 2,449)21, identifying altered DNAm near to genes involved in the innate 

immune response in those exposed to antidepressants21. As self-report measures may be 

unreliable due to volunteer recall bias, a poor understanding of the medication nosology, and 

non-disclosure22–24, Barbu et al.21 also performed an MWAS of antidepressant exposure 

based on recorded antidepressant prescriptions in the last 12 months. However, this assumes 

continuous treatment, potentially overestimating exposure due to general low adherence to 

antidepressant medication25. Calculation of active treatment periods from consecutive 

prescribing events provides a potentially more reliable identification of antidepressant 

exposure26.  

 

In our study, we build upon previous analyses by Barbu et al.21 by analysing a larger sample 

of GS (N = 16,536), and by estimating active treatment periods from prescribing records to 

identify those exposed to antidepressants at DNAm measurement. First, an MWAS was 

performed on both the self-report and prescription-derived measures of antidepressant 

exposure. Second, to assess the potential confounding by MDD, the MWAS analyses were 

restricted to MDD cases only. Third, functional follow-up analysis of differentially 
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methylated CpG sites was performed. Fourth, we investigated the enrichment of top CpGs in 

GS and an independent MWAS conducted in the Netherlands Study of Depression and 

Anxiety (NESDA). Fifth, the relationship between time in treatment and DNAm at 

significant CpG sites was investigated. Finally, a methylation profile score (MPS) for self-

report antidepressant exposure was trained in GS and tested for an association with 

antidepressant exposure in eight independent external datasets: Finn Twin Cohort (FTC), 

Study of Health in Pomerania (SHIP-Trend), Lothian Birth Cohort 1936 (LBC1936), 

FOR2107, NTR, Avon Longitudinal Study of Parents and Children (ALSPAC), Munich 

Antidepressant Response Study/Unipolar Depression Study (MARS-UniDep) and the 

Environmental Risk (E-Risk) Longitudinal Twin Study, alongside a prospective sample of 

GS: Stratifying Depression and Resilience Longitudinally (STRADL) (Figure 1).  

Figure 1: Schematic of study design.  

 

Methods and Materials 

Generation Scotland  
 
Generation Scotland: The Scottish Family Health Study (GS) is a family-based cohort study 

(N ~ 24,000), investigating the genetic and environmental factors influencing health within 

Scotland (eMethods)27,28. Data collection including biological sampling occurred between 

February 2006 and March 2011. Written consent was provided before any assessment and/or 

sampling took place. Ethical approval was provided by the Tayside Research Ethics 

Committee (REC reference 05/S1401/89).  

 

Methylation data  
 
DNAm was profiled from baseline blood samples using the Illumina MethylationEPIC array 

for 19,390 individuals. Methylation typing was performed in 4 distinct sets between 2017 and 
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2021. Sets 1, 2 and 4 included related individuals within and between each set while all 

individuals in set 3 were unrelated to each other and to individuals in set 1 (genetic 

relationship matrix (GRM) threshold <�0.05). Following quality control (QC) (eMethods), 

the sample sizes were Set 1: 5,087, Set 2: 459, Set 3: 4,450 and Set 4: 8,873 individuals. The 

sets were combined and dasen normalisation was performed across all individuals29. In total, 

752,741 probes and 18,869 individuals passed QC. Beta-values were transformed to M-

values using the ‘beta2M()’ function in the lumi R package30, and standardised using the ‘std-

probe’ flag in the OSCA software31.  

 

Antidepressant exposure phenotypes 

Prescription-derived antidepressant exposure was measured using antidepressant 

prescriptions from Public Health Scotland (eMethods), according to the British National 

Formulary (BNF) paragraph code ‘040303’, which largely corresponds to Anatomical 

Therapeutic Chemical (ATC) subclass ‘N06A’ (eTable 1) (Nprescriptions = 174,454, Npeople= 

7,544) (eTable 2, eFigures 1-8). After removing ambiguous prescriptions (Nprescriptions = 5,484, 

Npeople = 171) (eMethods, eTable 3), active treatment periods were defined by consecutive 

dispensing of antidepressant medications (eMethods, eFigures 9-11). Those who had their 

blood-draw appointment ≥ 7 days after treatment initiation or < 7 days after the end of a 

treatment period were defined as exposed (Nexposed = 861) (eFigure 12). Those with no 

antidepressant prescriptions on record were defined as unexposed (Nunexposed = 7,090).  

Self-reported antidepressant exposure was derived from questionnaires sent 1–2 weeks before 

venepuncture (eMethods, eTable 4, eFigure 13). Those who did/did not self-report 

antidepressant use were defined as exposed and unexposed respectively (Nexposed = 1,508, 

Nunexposed = 15,028). Out of 6,473 individuals with both self-report and prescription-derived 

phenotypes, 6,355 exhibited concordant classification of antidepressant exposure (eFigure 
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14). The MDD-only phenotypes were derived by stratifying the samples to those with a 

lifetime MDD diagnosis, ascertained by the Structured Clinical Interview of the Diagnostic 

and Statistical Manual, version IV (SCID)32 (prescription-derived: Nexposed= 380, Nunexposed = 

412, self-report: Nexposed= 766, Nunexposed = 1,502) (eMethods, eFigure 15).  

 

Methylome-wide association study 

The MWAS were performed using a Mixed-linear-model Omics-based Analysis (MOA) in 

the OSCA software31. To account for relatedness within GS, each phenotype was regressed 

on a GRM33 using the Best Linear Unbiased Prediction (BLUP) tool in GCTA software34. 

The residuals were entered into a MOA model, which included a methylation omics-

relatedness matrix as a random effect and age, sex, AHRR probe (cg05575921) M-values to 

proxy for smoking status, and predicted monocyte and lymphocyte cell proportions as fixed 

effects. Statistical significance was assessed using the p-value threshold 9.42x10-8, as 

recommended for case-control MWAS analyses35.  Effect sizes represent a per-1 standard-

deviation increase in CpG methylation M-values. 

 Differentially methylated regions (DMRs) were identified using the dmrff R package36, 

which performs an inverse-variance-weighted meta-analysis of MWAS beta and standard-

error estimates per region, adjusting for estimate uncertainty and the correlational structure 

between probes. Candidate DMRs are identified as sets (>2) of CpGs <= 500bp apart with 

nominal significance (P < 0.05) and consistent effect direction. DMRs achieving Bonferroni-

corrected p-value < 0.05 were considered statistically significant.  

 

Functional annotation  

Gene-sets for both MWAS were collated by annotating the top 100 CpGs (by p-value) by the 

Infinium MethylationEPIC BeadChip database37. Hypergeometric tests, using ‘phyper()’, 
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were used to assess the overlap of CpGs and gene-sets from both analyses. The background 

set consisted of CpGs and genes on or annotated to the EPIC array (eTable 5). The 

‘GENE2FUNC’ analysis in functional mapping and annotation web-tool (FUMA) was used 

to assess enrichment of both gene-sets across 54 specific tissues in the Genotype-Tissue 

Expression (GTEx)38,39 Project. Both gene-sets were tested for enrichment in synapse-related 

GO terms using the SynGo web tool40 and for enrichment in GO: Biological Processes gene-

sets (20 < ngenes < 500) in the msigdbr database41, using the ‘gsameth()’ function from 

missMethyl R package42 (eTable 6).  

 

Methylation profile score  

A least absolute shrinkage and selection operator (LASSO) penalised regression model was 

applied using ‘cv.biglasso()’ from the glmnet R package43 on the GS sample. First, the self-

report phenotype was regressed against the GRM (using BLUP), age, sex, AHRR probe M-

values as a proxy for smoking status, batch, and white blood cell (monocyte and lymphocyte) 

proportions. The residuals were used as the dependent variable and the standardised CpG 

sites on both EPIC and 450K Illumina arrays (N = 365,912) were included as independent 

variables. Ten-fold cross-validation was applied and the mixing parameter was set to 1. The 

non-zero weighted CpGs identified in the LASSO model were used to calculate a weighted-

sum MPS in external datasets (FTC, SHIP-Trend, FOR2107, NTR, LBC1936, ALSPAC, 

MARS-UniDep and E-Risk, Ntotal = 9,578, Nexposed = 619) and a prospective sample of GS 

(STRADL, Ntotal = 658, Nexposed = 42) (eMethods). The association between antidepressant 

exposure and the MPS was assessed using; generalised linear mixed models, generalised 

linear models and generalised estimation equations, depending on the cohort’s population 

structure (i.e., twin studies vs unrelated participants) and DNAm pre-processing (eMethods, 

eTables 7-9). Age, sex, batch (where applicable), white blood cell proportions/counts and M-
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values at the AHRR probe were included as covariates. A random-effects meta-analysis using 

a DerSimonian-Laird estimator was performed to assess the overall association between the 

MPS and antidepressant exposure, using the meta R package44. 

 

Results 

The demographic features of both antidepressant exposure phenotypes in the GS are shown in 

Table 1.  

 

Table 1: Demographics of antidepressant exposed and unexposed individuals using the 

prescription-derived and self-reported measures in Generation Scotland. M = Mean, SD 

= Standard Deviation. 

 

Methylome-wide association studies 
 
The self-report MWAS (Figure 2A, Table 2) and prescription-derived MWAS (Figure 2B, 

eTable 10) identified seven and four hypermethylated CpGs respectively, in those exposed to 

antidepressants (eFigure 16, eFigure 17). The effect estimates from all CpGs in both analyses 

were significantly correlated (R = 0.54, p < 2.2x10-16) (eFigure 18).  

 

Table 2: Eight CpGs associated with self-reported and/or prescription-derived 

antidepressant use. The EWAS catalog was searched using the ewascatalog R package45 for 

other studies (n > 1000) which report a significant CpG-trait association, accessed on  

17/03/2024.  

 

Figure 2: Methylome-wide association study of self-reported (A) and prescription-derived (B) 

antidepressant exposure. (C) The standardised effect sizes and 95% confidence-intervals for 
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associated CpGs (p < 9.42x10-8) for the full sample (dark-green) and MDD-only sample 

(light-green).  

 

In the MDD-only self-report MWAS, only cg08527546 exhibited a significant association 

with antidepressant exposure (β = 0.050, p = 3.57x10-8); no CpGs were significantly 

associated in the MDD-only prescription-derived MWAS (eTable 11, eFigure 19). For both 

phenotypes, there was a significant correlation between CpG effect estimates in the full and 

MDD-only analyses (Rself-report = 0.57, pself-report < 2.2x10-16, Rprescription= 0.43, pprescription< 

2.2x10-16) (eFigure 20). Notably, restricting the analyses to MDD cases did not attenuate the 

effect sizes of the significant CpGs (Figure 2C). 

 

Differentially methylated regions 
 
There were 719,506 candidate regions considered in the dmrff analysis. The self-report 

MWAS had one significant DMR (� = 0.096, padj = 4.98x10-3) (eTable 12), consisting of two 

CpGs (cg01964004 and cg15071067), which maps to deoxyguanosine kinase antisense 

RNA1 (DGUOK-AS1) (eFigure 21). The prescription-derived MWAS identified no 

significant DMRs (eTable 13).  

 

Functional Annotation  
 
The most significant 100 CpGs from the self-report and prescription-derived MWAS were 

annotated to 77 and 83 genes respectively (eTables 14-17). There was a significant overlap 

between both the CpG-sets (Noverlap = 17, p = 1.95x10-48, eFigure 22) and the gene-sets 

(Noverlap = 16, p =1.3x10-25, eFigure 23).  The self-report gene-set was significantly enriched 

for the genes expressed in the amygdala (eTable 18, eFigure 24), whilst the prescription-

derived gene-set had no significant enrichment (eTable 19, eFigure 25). There was significant 
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enrichment of the self-report gene-set in GO:0008021;” synaptic vesicle membrane” (pFDR = 

0.030, SF26-28, ST20-23). There was no significant enrichment for any GO:Biological 

Processes pathways tested for either gene set (eFigure 29-30, eTable 24-25) 

 

Enrichment analysis: Netherlands Study of Depression and Anxiety 
 
An MWAS of self-reported antidepressant exposure was performed in the NESDA cohort46 

(N = 812, Nexposed = 398), with all participants having a recent (~ 6 months) MDD DSM-IV 

diagnosis (eResults). The DNAm assays were obtained from whole blood samples using 

methyl-CG binding domain sequencing (MBD-Seq)47–49 (eResults). Enrichment tests were 

performed to assess the overlap of top findings from GS and NESDA, using the shiftR R 

package50. For both MWAS’, CpGs were filtered to those which showed a concordant 

direction of effect and three thresholds (0.1, 0.5 and 1%) were used to define top (by p-value) 

findings. Results suggested a small (OR: 1.39) but significant (P < 0.042) enrichment 

between the top 1% of results from both MWAS’. 

 

Methylation differences by time in treatment  
 
To investigate the relationship of DNAm at significantly associated CpGs (n = 8) with the 

length of antidepressant exposure, a Spearman correlation test was performed between the 

DNAm levels and time in current treatment for those within a treatment period (N = 863). 

Two probes, cg15071067 (DGUOK-AS1) and cg26277237 (KANK1), showed a significant 

correlation between methylation and time in treatment (cg15071067:�= 0.085, p = 0.012, 

cg26277237: �= 0.087, p = 0.011) (eFigures 31-33, eTable 26), with the same direction of 

effect found in the MWAS.  

 

Methylation Profile Score  
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There were 212 CpGs identified by the LASSO regression model (eFigures 34-36, eTable 27), 

used to calculate the MPS in external cohorts (Figure 3A, eFigures 37-46). All cohorts bar 

one (NTR) showed a positive relationship between antidepressant MPS and antidepressant 

exposure (�FTC = 0.156, �SHIP-Trend = 0.134, �STRADL = 0.149, �LBC1936 = 0.228, �FOR2107 = 

0.349, �MARS= 0.263, �ALSPAC= 0.170, �ERISK= 0.342, �NTR= -0.031) (eFigure 47, eTable 28). 

Nagelkerke’s pseudo R2 estimates ranged from 1.11x10-3 (NTR) to 0.03 (LBC1936) (Figure 

3B). The random-effects meta-analysis found a significant association between 

antidepressant exposure and the MPS (pooled � [95%CI]: 0.196 [0.105, 0.288], p < 1x10-4), 

with low heterogeneity between studies (I2 [95%CI] = 0% [0, 64.8%]) (eTable 29).   

 

Figure 3: Antidepressant exposure ~ MPS in external cohorts. A) The sample sizes of 

each dataset, B) Nagelkerke’s pseudo R2, C) The effect sizes and confidence intervals of 

MPS ~ antidepressant exposure analysis in each cohort. Square size = study weight, diamond 

= meta-analysed effect.  

 

Discussion  

This study presents the largest investigation of the impact of antidepressant exposure on the 

methylome51. The results from self-report or prescription-derived antidepressant exposure 

were broadly consistent, corroborating previous findings26. There was evidence of 

hypermethylation at eight CpGs and a region on Chromosome 2 (BP: 74196550-74196572) 

in those exposed to antidepressants. The CpG with the highest significance and the largest 

effect size, cg26277237, mapped to KN motif and ankyrin repeat domains 1 (KANK1), was 

previously reported by Barbu et al.21 on a smaller sample of GS. The DMR analysis indicated 

antidepressant exposure is also significantly associated with hypermethylation near DGUOK-

AS1, a long non-coding RNA (lncRNA). KANK1 facilitates the formation of the actin 
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cytoskeleton and has an active role in neurite outgrowth and neurodevelopment52. A meta-

analysis of copy-number variant association studies found a significant duplication in KANK1 

in those with five different neurodevelopmental disorders, including MDD53. DGUOK-AS1 

has an inhibitory role on the expression of a nearby gene DGUOK54, which encodes a 

mitochondrial enzyme involved in the production of mitochondrial DNA54, and has 

previously been implicated as a risk gene in schizophrenia55 and Alzheimer disease56. A 

recent review reported evidence that antidepressants do influence mitochondrial function, 

although the effects are heterogeneous between different types of antidepressants, 

independent of their current classification57,58.  

 

Seven of the CpGs significantly hypermethylated with antidepressant use have been reported 

previously to also be significantly hypermethylated with incident and/or prevalent type 2 

diabetes (T2D)59 in GS. Previous epidemiological studies have indicated that antidepressant 

use leads to an increased risk of T2D onset in a time- and dose-dependent manner60,61. Future 

prospective and longitudinal research into the link between antidepressant use, DNAm and 

T2D, alongside the use of other independent datasets is required.  

 

The performance of the GS-trained MPS in discriminating antidepressant exposure across 

eight external datasets, demonstrates that this may be a generalizable biomarker indicative of 

antidepressant exposure and adds to a growing set of MPS that could potentially provide 

clinically relevant phenotypic information62–65. Accurate estimation of this exposure history 

could be highly valuable for epidemiological studies where prescribing data may not be 

available. Taken in combination with MPS for other risk factors, an MPS for antidepressant 

exposure may help provide a robust characterisation of an individual’s medical history.   
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There are several strengths of this study. The comparison of self-report and prescription-

derived measures is valuable, as the former is often cheaper and easier to obtain in large-scale 

cohort studies25. Furthermore, the MDD-only analysis indicates that the hypermethylation 

associated with antidepressant use is not driven by MDD indication. Additionally, the 

significant association of an MPS trained in GS with antidepressant exposure in external 

datasets, and the significant enrichment with an independent MWAS consolidates our 

findings.  

 

This study has various limitations. Both measures of antidepressant exposure do not 

discriminate between antidepressant drugs, classes, or dosages. However, we anticipate the 

opportunity to investigate more medication-specific effects on the methylome using 

prescription-linkage data as biobanks increase in size. Additionally, all the cohorts used 

primarily consist of European ancestry. It is paramount that this analysis is conducted in non-

European ancestral groups to further verify our findings and disentangle any ancestry-specific 

effects66–68. Finally, by design, this epidemiological study cannot directly address causality 

between antidepressant exposure and DNAm. The integration of DNAm analysis into 

randomised controlled trials of antidepressants is important to establish the exact nature of 

the association and to inform potential new targets for antidepressant therapy.  

 

This study indicates that antidepressant exposure is associated with hypermethylation at 

DGUOK-AS1 and KANK1, which have roles in mitochondrial metabolism and neurite 

outgrowth respectively. Future research should include more cohorts of non-European 

ancestry, alongside the incorporation of DNAm in randomised trials of antidepressants to 

further consolidate findings and establish causality. If replicated, targeting of these genes 

could inform the design of more effective and better tolerated treatments for depression. 
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