001     1028746
005     20240717202036.0
037 _ _ |a FZJ-2024-04794
100 1 _ |a Korneychuk, S.
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 16th European SOFC & SOE Forum
|g EFCF2024
|c Lucerne
|d 2024-07-02 - 2024-07-05
|w Switzerland
245 _ _ |a In-situ TEM reduction of a solid oxide cell with NiO/YSZ and NiO/BZCY materials for fuel electrode
260 _ _ |c 2024
300 _ _ |a B1103, 1-10
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1721205912_1233
|2 PUB:(DE-HGF)
520 _ _ |a Increasing the durability of solid oxide cells is one of the main goals for achievingwider industrial application. The quality of the electrode plays a major role in theperformance and durability of a fuel and electrolysis cells. Ni/YSZ or Ni/BZCY (BZCY staysfor the state-of-the-art proton conducting ceramic material BaZr1-x(Ce,Y)xO3-d) electrodes ofsolid oxide cells are commonly reduced from NiO/YSZ or NiO/BZCY under hydrogenatmosphere at high temperatures, prior to operation. It is known from commissioning thate.g. reduction temperature and H2 pressure influence the initial performance of the fuelelectrode by governing Ni particle size and shape.With in-situ TEM we are able to observe the reduction of NiO in real time whileexposing the sample to hydrogen gas and heat [28]. We studied the electrode reduction atthe H2 pressures up to 1 atmosphere and temperatures 200-850 °C. Grain boundaries andtriple junctions between NiO and YSZ or BZCY are determined as the starting points of thereduction process at lower temperatures. We also showed that the initial temperature ofthe reduction is crucial to achieve a high number of electrochemically active triple phaseboundaries between e.g. Ni/YSZ and gas. In-situ results go in good agreement with ex-situresults obtained from a bulk cell reduced in a test bench.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
700 1 _ |a Grosselindemann, C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schäfer, Laura-Alena
|0 P:(DE-Juel1)187594
|b 2
|u fzj
700 1 _ |a Ivanova, Mariya
|0 P:(DE-Juel1)129617
|b 3
|u fzj
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 4
|u fzj
700 1 _ |a Weber, A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pundt, A.
|0 P:(DE-HGF)0
|b 6
909 C O |o oai:juser.fz-juelich.de:1028746
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129636
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-2-20101013
|k IMD-2
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IMD-2-20101013
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21