001028748 001__ 1028748
001028748 005__ 20240717202036.0
001028748 037__ $$aFZJ-2024-04796
001028748 1001_ $$0P:(DE-HGF)0$$aKorneychuk, S.$$b0
001028748 1112_ $$a16th European SOFC & SOE Forum$$cLucerne$$d2024-07-02 - 2024-07-05$$wSwitzerland
001028748 245__ $$aIn-situ TEM reduction of a solid oxide cell with NiO/YSZ and NiO/BZCY materials for fuel electrode
001028748 260__ $$c2024
001028748 3367_ $$033$$2EndNote$$aConference Paper
001028748 3367_ $$2DataCite$$aOther
001028748 3367_ $$2BibTeX$$aINPROCEEDINGS
001028748 3367_ $$2DRIVER$$aconferenceObject
001028748 3367_ $$2ORCID$$aLECTURE_SPEECH
001028748 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1721204591_13815$$xAfter Call
001028748 520__ $$aIncreasing the durability of solid oxide cells is one of the main goals for achievingwider industrial application. The quality of the electrode plays a major role in theperformance and durability of a fuel and electrolysis cells. Ni/YSZ or Ni/BZCY (BZCY staysfor the state-of-the-art proton conducting ceramic material BaZr1-x(Ce,Y)xO3-d) electrodes ofsolid oxide cells are commonly reduced from NiO/YSZ or NiO/BZCY under hydrogenatmosphere at high temperatures, prior to operation. It is known from commissioning thate.g. reduction temperature and H2 pressure influence the initial performance of the fuelelectrode by governing Ni particle size and shape.With in-situ TEM we are able to observe the reduction of NiO in real time whileexposing the sample to hydrogen gas and heat [28]. We studied the electrode reduction atthe H2 pressures up to 1 atmosphere and temperatures 200-850 °C. Grain boundaries andtriple junctions between NiO and YSZ or BZCY are determined as the starting points of thereduction process at lower temperatures. We also showed that the initial temperature ofthe reduction is crucial to achieve a high number of electrochemically active triple phaseboundaries between e.g. Ni/YSZ and gas. In-situ results go in good agreement with ex-situresults obtained from a bulk cell reduced in a test bench.
001028748 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001028748 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
001028748 7001_ $$0P:(DE-HGF)0$$aGrosselindemann, C.$$b1
001028748 7001_ $$0P:(DE-Juel1)187594$$aSchäfer, Laura-Alena$$b2$$ufzj
001028748 7001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya$$b3$$ufzj
001028748 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b4$$ufzj
001028748 7001_ $$0P:(DE-HGF)0$$aWeber, A.$$b5
001028748 7001_ $$0P:(DE-HGF)0$$aPundt, A.$$b6
001028748 909CO $$ooai:juser.fz-juelich.de:1028748$$pVDB
001028748 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187594$$aForschungszentrum Jülich$$b2$$kFZJ
001028748 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b3$$kFZJ
001028748 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b4$$kFZJ
001028748 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001028748 9141_ $$y2024
001028748 920__ $$lyes
001028748 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001028748 980__ $$aconf
001028748 980__ $$aVDB
001028748 980__ $$aI:(DE-Juel1)IMD-2-20101013
001028748 980__ $$aUNRESTRICTED