001028751 001__ 1028751
001028751 005__ 20240717202036.0
001028751 037__ $$aFZJ-2024-04799
001028751 1001_ $$0P:(DE-HGF)0$$aLiu, Y.$$b0
001028751 1112_ $$a16th European SOFC & SOE Forum$$cLucerne$$d2024-07-02 - 2024-07-05$$wSwitzerland
001028751 245__ $$aAccelerated Stress Test and Quantitative Analysis of Degradation in Nickel/Ceria Fuel Electrodes
001028751 260__ $$c2024
001028751 3367_ $$033$$2EndNote$$aConference Paper
001028751 3367_ $$2BibTeX$$aINPROCEEDINGS
001028751 3367_ $$2DRIVER$$aconferenceObject
001028751 3367_ $$2ORCID$$aCONFERENCE_POSTER
001028751 3367_ $$2DataCite$$aOutput Types/Conference Poster
001028751 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1721204621_13387$$xAfter Call
001028751 520__ $$aIn targeting lifetimes of 10 years, accelerated stress testing becomes inevitable forensuring the longevity and successful market introduction of SOCs. These elevatedstressors can impact various degradation mechanisms to differing extents and may pushthe cell into unstable operating regimes, resulting in behaviors irrelevant to nominaloperating conditions. Consequently, designing such tests presents a significant challenge.For SOCs aiming for operating temperatures below 600°C, elevated operatingtemperatures are necessary to accelerate aging due to microstructural changes.Accelerated stress tests are tailored for state-of-the-art screen-printed Ni/GDC cermet fuelelectrodes, utilizing symmetrical cells to mitigate the impact of the air electrode. Thesecells operate at temperatures ranging from 600 to 750°C with a high steam content of50%. Electrode performance over time is monitored using electrochemical impedancespectroscopy. Temporal changes in loss processes are identified through DRT analysis,followed by fitting to an equivalent circuit model. We introduce a quantitative analysismethod and a corresponding aging model for direct comparison between degradationunder different stressors.
001028751 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001028751 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
001028751 7001_ $$0P:(DE-Juel1)189092$$aJuckel, Martin$$b1$$ufzj
001028751 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b2$$ufzj
001028751 7001_ $$0P:(DE-HGF)0$$aWeber, A.$$b3
001028751 909CO $$ooai:juser.fz-juelich.de:1028751$$pVDB
001028751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)189092$$aForschungszentrum Jülich$$b1$$kFZJ
001028751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b2$$kFZJ
001028751 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001028751 9141_ $$y2024
001028751 920__ $$lyes
001028751 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001028751 980__ $$aposter
001028751 980__ $$aVDB
001028751 980__ $$aI:(DE-Juel1)IMD-2-20101013
001028751 980__ $$aUNRESTRICTED