001028753 001__ 1028753
001028753 005__ 20240717202036.0
001028753 037__ $$aFZJ-2024-04801
001028753 1001_ $$0P:(DE-HGF)0$$aPinto, R.$$b0
001028753 1112_ $$a16th European SOFC & SOE Forum$$cLucerne$$d2024-07-02 - 2024-07-05$$wSwitzerland
001028753 245__ $$aHomogenization of fuel cell interconnects to determine the contacting configuration in a stack
001028753 260__ $$c2024
001028753 3367_ $$033$$2EndNote$$aConference Paper
001028753 3367_ $$2BibTeX$$aINPROCEEDINGS
001028753 3367_ $$2DRIVER$$aconferenceObject
001028753 3367_ $$2ORCID$$aCONFERENCE_POSTER
001028753 3367_ $$2DataCite$$aOutput Types/Conference Poster
001028753 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1721204578_14311$$xAfter Call
001028753 520__ $$aLarge scale production of solid oxide fuel cells (SOFCs) is the next step for ensuring cleanenergy conversion. During manufacturing of SOFC stacks, metallic interconnects play avital role in electrical contacting which highly influences the overall stack performance.Therefore, the force applied to a fuel cell stack to establish electrical contact is verycrucial. Different parameters or boundary conditions may cause non-uniform forcedistribution and large plastic deformation in some regions of the active area resulting inlocal damage or hotpots during operation. The phenomena of contact pressure distributionmay be studied more intuitively using Finite Element Methods (FEM). However, due togeometrically complex design of interconnects, simulations on a stack level arecomputationally expensive. Computational homogenization may be used to simplify stacklevel simulations and is also pursued in this work. The focus of this paper is to create afinite element framework using the homogenization approach to understand the effects ofmechanical pressing of the stacking on individual interconnect contacts. This approachwould help reduce the model complexity for stack level FEM simulations and achievefaster computation times. Such a simulation could, in turn give an understanding of themechanical contact pressure distribution in a stack. This, combined with phenomenon likethermal expansion and creep could calculate a theoretical electrical resistance duringoperation. Within the scope of this short paper, the homogenization framework formechanical loading of an interconnect is discussed and a simplified model is created. Theforce-deformation behavior of the model was compared and validated with itscorresponding full-field simulation. This modelling approach may be used to optimizeparameters like stacking force, materials, design of individual contacts, etc. for idealcontact pressures at individual contacts.
001028753 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001028753 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
001028753 7001_ $$0P:(DE-HGF)0$$aWelschinger, F.$$b1
001028753 7001_ $$0P:(DE-HGF)0$$aGiesselmann, N.$$b2
001028753 7001_ $$0P:(DE-HGF)0$$aReinshagen, H.$$b3
001028753 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b4$$ufzj
001028753 909CO $$ooai:juser.fz-juelich.de:1028753$$pVDB
001028753 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b4$$kFZJ
001028753 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001028753 9141_ $$y2024
001028753 920__ $$lyes
001028753 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001028753 980__ $$aposter
001028753 980__ $$aVDB
001028753 980__ $$aI:(DE-Juel1)IMD-2-20101013
001028753 980__ $$aUNRESTRICTED