001028773 001__ 1028773
001028773 005__ 20240729202032.0
001028773 037__ $$aFZJ-2024-04819
001028773 1001_ $$0P:(DE-Juel1)180539$$aAlbers, Jasper$$b0$$eCorresponding author$$ufzj
001028773 1112_ $$aFENS Forum$$cWien$$d2024-06-25 - 2024-06-29$$wAustria
001028773 245__ $$aQuantifying shared structure between real matrices of arbitrary shape
001028773 260__ $$c2024
001028773 3367_ $$033$$2EndNote$$aConference Paper
001028773 3367_ $$2BibTeX$$aINPROCEEDINGS
001028773 3367_ $$2DRIVER$$aconferenceObject
001028773 3367_ $$2ORCID$$aCONFERENCE_POSTER
001028773 3367_ $$2DataCite$$aOutput Types/Conference Poster
001028773 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1722230961_5618$$xAfter Call
001028773 520__ $$aAssessing the similarity of matrices is valuable for analyzing the extent to which data sets exhibit common features in tasks such as data clustering, dimensionality reduction, pattern recognition, group comparisons, and graph analysis. Methods proposed for comparing vectors, such as the cosine similarity, can be readily generalized to matrices. However, these approaches usually neglect the inherent two-dimensional structure of matrices. Existing methods that take this structure into account are only well-defined on square, symmetric, positive- definite matrices, limiting the range of applicability. Here, we propose Singular Angle Similarity (SAS), a measure for evaluating the structural similarity between two arbitrary, real matrices of the same shape based on singular value decomposition. By taking the two-dimensional structure of matrices explicitly into account, SAS is able to capture structural features that cannot be identified by traditional methods such as Euclidean distance or the cosine similarity.After introducing and characterizing the measure, we apply SAS to two neuroscientific use cases: adjacency matrices of probabilistic network connectivity, and state evolution matrices representing neural brain activity. We demonstrate that SAS can distinguish between network models based on their adjacency matrices. Furthermore, SAS captures differences in high-dimensional responses to different stimuli in MUAe data from macaque V1, which can be related to the underlying response properties of the neurons. Thereby, SAS allows for a quantification of closeness of related response patterns in a network of neurons. We conclude that SAS is a suitable measure for quantifying the shared structure of matrices with arbitrary shape in neuroscience and beyond.
001028773 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001028773 536__ $$0G:(DE-Juel1)BMBF-03ZU1106CB$$aBMBF 03ZU1106CB - NeuroSys: Algorithm-Hardware Co-Design (Projekt C) - B (BMBF-03ZU1106CB)$$cBMBF-03ZU1106CB$$x1
001028773 536__ $$0G:(GEPRIS)313856816$$aDFG project 313856816 - SPP 2041: Computational Connectomics (313856816)$$c313856816$$x2
001028773 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x3
001028773 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x4
001028773 7001_ $$0P:(DE-Juel1)176776$$aKurth, Anno$$b1$$ufzj
001028773 7001_ $$0P:(DE-Juel1)171572$$aGutzen, Robin$$b2$$ufzj
001028773 7001_ $$0P:(DE-Juel1)176593$$aMorales-Gregorio, Aitor$$b3$$ufzj
001028773 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b4$$ufzj
001028773 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b5$$ufzj
001028773 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha$$b6$$ufzj
001028773 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b7$$ufzj
001028773 909CO $$ooai:juser.fz-juelich.de:1028773$$popenaire$$pVDB$$pec_fundedresources
001028773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180539$$aForschungszentrum Jülich$$b0$$kFZJ
001028773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176776$$aForschungszentrum Jülich$$b1$$kFZJ
001028773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171572$$aForschungszentrum Jülich$$b2$$kFZJ
001028773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176593$$aForschungszentrum Jülich$$b3$$kFZJ
001028773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b4$$kFZJ
001028773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b5$$kFZJ
001028773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich$$b6$$kFZJ
001028773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b7$$kFZJ
001028773 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001028773 9141_ $$y2024
001028773 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001028773 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
001028773 980__ $$aposter
001028773 980__ $$aVDB
001028773 980__ $$aI:(DE-Juel1)IAS-6-20130828
001028773 980__ $$aI:(DE-Juel1)INM-10-20170113
001028773 980__ $$aUNRESTRICTED