001     1028773
005     20240729202032.0
037 _ _ |a FZJ-2024-04819
100 1 _ |a Albers, Jasper
|0 P:(DE-Juel1)180539
|b 0
|e Corresponding author
|u fzj
111 2 _ |a FENS Forum
|c Wien
|d 2024-06-25 - 2024-06-29
|w Austria
245 _ _ |a Quantifying shared structure between real matrices of arbitrary shape
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1722230961_5618
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Assessing the similarity of matrices is valuable for analyzing the extent to which data sets exhibit common features in tasks such as data clustering, dimensionality reduction, pattern recognition, group comparisons, and graph analysis. Methods proposed for comparing vectors, such as the cosine similarity, can be readily generalized to matrices. However, these approaches usually neglect the inherent two-dimensional structure of matrices. Existing methods that take this structure into account are only well-defined on square, symmetric, positive- definite matrices, limiting the range of applicability. Here, we propose Singular Angle Similarity (SAS), a measure for evaluating the structural similarity between two arbitrary, real matrices of the same shape based on singular value decomposition. By taking the two-dimensional structure of matrices explicitly into account, SAS is able to capture structural features that cannot be identified by traditional methods such as Euclidean distance or the cosine similarity.After introducing and characterizing the measure, we apply SAS to two neuroscientific use cases: adjacency matrices of probabilistic network connectivity, and state evolution matrices representing neural brain activity. We demonstrate that SAS can distinguish between network models based on their adjacency matrices. Furthermore, SAS captures differences in high-dimensional responses to different stimuli in MUAe data from macaque V1, which can be related to the underlying response properties of the neurons. Thereby, SAS allows for a quantification of closeness of related response patterns in a network of neurons. We conclude that SAS is a suitable measure for quantifying the shared structure of matrices with arbitrary shape in neuroscience and beyond.
536 _ _ |a 5231 - Neuroscientific Foundations (POF4-523)
|0 G:(DE-HGF)POF4-5231
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 03ZU1106CB - NeuroSys: Algorithm-Hardware Co-Design (Projekt C) - B (BMBF-03ZU1106CB)
|0 G:(DE-Juel1)BMBF-03ZU1106CB
|c BMBF-03ZU1106CB
|x 1
536 _ _ |a DFG project 313856816 - SPP 2041: Computational Connectomics (313856816)
|0 G:(GEPRIS)313856816
|c 313856816
|x 2
536 _ _ |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)
|0 G:(EU-Grant)101147319
|c 101147319
|f HORIZON-INFRA-2022-SERV-B-01
|x 3
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 4
700 1 _ |a Kurth, Anno
|0 P:(DE-Juel1)176776
|b 1
|u fzj
700 1 _ |a Gutzen, Robin
|0 P:(DE-Juel1)171572
|b 2
|u fzj
700 1 _ |a Morales-Gregorio, Aitor
|0 P:(DE-Juel1)176593
|b 3
|u fzj
700 1 _ |a Denker, Michael
|0 P:(DE-Juel1)144807
|b 4
|u fzj
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 5
|u fzj
700 1 _ |a van Albada, Sacha
|0 P:(DE-Juel1)138512
|b 6
|u fzj
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 7
|u fzj
909 C O |o oai:juser.fz-juelich.de:1028773
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180539
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176776
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176593
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144807
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144168
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)138512
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144174
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5231
|x 0
914 1 _ |y 2024
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21