001     1028863
005     20240722202104.0
024 7 _ |a 10.34734/FZJ-2024-04849
|2 datacite_doi
037 _ _ |a FZJ-2024-04849
100 1 _ |a Baumann, Thomas
|0 P:(DE-Juel1)190575
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 13th Parallel-in-Time Workshop
|c Bruges
|d 2024-02-05 - 2024-02-09
|w Belgium
245 _ _ |a Adaptive Step Size in SDC and What’s New With pySDC?
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1721622245_29528
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a We are transferring well-known concepts from embedded Runge-Kutta methods to Spectral Deferred Corrections (SDC) to enable adaptive step size selection.This works by estimating the local error and updating the step size such that a set tolerance is matched.The local error is estimated via a secondary lower-order method and the step size is updated according to this method's order.Taking a converged collocation problem, we can generate a secondary solution by interpolation from all but one collocation node to the remaining node.Because there is no dependence on how the collocation problem was solved, advanced SDC approaches such as inexactness and diagonal preconditioners can be used.We show with experiments in pySDC that such schemes can outperform state-of-the-art diagonally implicit Runge-Kutta methods for partial differential equations in wall-time measurements.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a TIME-X - TIME parallelisation: for eXascale computing and beyond (955701)
|0 G:(EU-Grant)955701
|c 955701
|f H2020-JTI-EuroHPC-2019-1
|x 1
700 1 _ |a Speck, Robert
|0 P:(DE-Juel1)132268
|b 1
|u fzj
700 1 _ |a Lunet, Thibaut
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ruprecht, Daniel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Götschel, Sebastian
|0 P:(DE-HGF)0
|b 4
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1028863/files/adaptiveSDC.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1028863/files/adaptiveSDC.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1028863/files/adaptiveSDC.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1028863/files/adaptiveSDC.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1028863/files/adaptiveSDC.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1028863
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190575
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132268
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21