001028899 001__ 1028899
001028899 005__ 20250204113912.0
001028899 0247_ $$2doi$$a10.1016/j.micron.2024.103688
001028899 0247_ $$2ISSN$$a0047-7206
001028899 0247_ $$2ISSN$$a0968-4328
001028899 0247_ $$2ISSN$$a1878-1152
001028899 0247_ $$2ISSN$$a1878-4291
001028899 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04860
001028899 0247_ $$2pmid$$a38991624
001028899 0247_ $$2WOS$$aWOS:001267955000001
001028899 037__ $$aFZJ-2024-04860
001028899 082__ $$a570
001028899 1001_ $$0P:(DE-Juel1)186015$$aLeidl, Max Leo$$b0
001028899 245__ $$aInfluence of loss function and electron dose on ptychography of 2D materials using the Wirtinger flow
001028899 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2024
001028899 3367_ $$2DRIVER$$aarticle
001028899 3367_ $$2DataCite$$aOutput Types/Journal article
001028899 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721131781_10763
001028899 3367_ $$2BibTeX$$aARTICLE
001028899 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001028899 3367_ $$00$$2EndNote$$aJournal Article
001028899 520__ $$aIterative phase retrieval is based on minimising a loss function as a measure of the consistency of an initial guess and underlying experimental data. Under ideal experimental conditions, real data contains Poissonian noise due to counting statistics. In this work, we use the Wirtinger Flow concept in combination with four common loss functions, being the L1 loss, the mean-squared error (MSE), the amplitude loss and the Poisson loss. Since only the latter reflects the counting statistics as an asymmetric Poisson distribution correctly, our simulation study focuses on two main cases. Firstly, high-dose momentum-resolved scanning transmission electron microscopy (STEM) of an MoS2 monolayer is considered for phase retrieval. In this case, it is found that the four losses perform differently with respect to chemical sensitivity and frequency transfer, which we interprete in terms of the substantially different signal level in the bright and dark field part of diffraction patterns. Remedies are discussed using further simulations, addressing the use of virtual ring detectors for the dark field, or restricting loss calculation to the bright field. Secondly, a dose series is presented down to 100 electrons per diffraction pattern. It is found that all losses yield qualitatively reasonable structural data in the phase, whereas only MSE and Poisson loss range at the correct amplitude level. Chemical contrast is, in general, reliably obtained using the Poisson concept, which also provides the most continuous spatial frequency transfer as to the reconstructed object transmission function.
001028899 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001028899 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001028899 536__ $$0G:(DE-Juel-1)DE002325$$a4D-BioSTEM (DE002325)$$cDE002325$$x2
001028899 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001028899 7001_ $$0P:(DE-Juel1)185768$$aDiederichs, Benedikt$$b1$$ufzj
001028899 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b2$$ufzj
001028899 7001_ $$0P:(DE-Juel1)165314$$aMüller-Caspary, Knut$$b3$$eCorresponding author$$ufzj
001028899 773__ $$0PERI:(DE-600)1492133-9$$a10.1016/j.micron.2024.103688$$gVol. 185, p. 103688 -$$p103688 -$$tMicron$$v185$$x0047-7206$$y2024
001028899 8564_ $$uhttps://juser.fz-juelich.de/record/1028899/files/Influence%20of%20loss%20function%20and%20electron%20dose.pdf$$yOpenAccess
001028899 8564_ $$uhttps://juser.fz-juelich.de/record/1028899/files/Influence%20of%20loss%20function%20and%20electron%20dose.gif?subformat=icon$$xicon$$yOpenAccess
001028899 8564_ $$uhttps://juser.fz-juelich.de/record/1028899/files/Influence%20of%20loss%20function%20and%20electron%20dose.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001028899 8564_ $$uhttps://juser.fz-juelich.de/record/1028899/files/Influence%20of%20loss%20function%20and%20electron%20dose.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001028899 8564_ $$uhttps://juser.fz-juelich.de/record/1028899/files/Influence%20of%20loss%20function%20and%20electron%20dose.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001028899 909CO $$ooai:juser.fz-juelich.de:1028899$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001028899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186015$$aForschungszentrum Jülich$$b0$$kFZJ
001028899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185768$$aForschungszentrum Jülich$$b1$$kFZJ
001028899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b2$$kFZJ
001028899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165314$$aForschungszentrum Jülich$$b3$$kFZJ
001028899 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001028899 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001028899 9141_ $$y2024
001028899 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001028899 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
001028899 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001028899 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028899 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001028899 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
001028899 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001028899 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICRON : 2022$$d2025-01-02
001028899 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001028899 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
001028899 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02
001028899 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001028899 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
001028899 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
001028899 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
001028899 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001028899 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-02
001028899 920__ $$lyes
001028899 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001028899 980__ $$ajournal
001028899 980__ $$aVDB
001028899 980__ $$aUNRESTRICTED
001028899 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001028899 9801_ $$aFullTexts