001     1028899
005     20250204113912.0
024 7 _ |a 10.1016/j.micron.2024.103688
|2 doi
024 7 _ |a 0047-7206
|2 ISSN
024 7 _ |a 0968-4328
|2 ISSN
024 7 _ |a 1878-1152
|2 ISSN
024 7 _ |a 1878-4291
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-04860
|2 datacite_doi
024 7 _ |a 38991624
|2 pmid
024 7 _ |a WOS:001267955000001
|2 WOS
037 _ _ |a FZJ-2024-04860
082 _ _ |a 570
100 1 _ |a Leidl, Max Leo
|0 P:(DE-Juel1)186015
|b 0
245 _ _ |a Influence of loss function and electron dose on ptychography of 2D materials using the Wirtinger flow
260 _ _ |a New York, NY [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721131781_10763
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Iterative phase retrieval is based on minimising a loss function as a measure of the consistency of an initial guess and underlying experimental data. Under ideal experimental conditions, real data contains Poissonian noise due to counting statistics. In this work, we use the Wirtinger Flow concept in combination with four common loss functions, being the L1 loss, the mean-squared error (MSE), the amplitude loss and the Poisson loss. Since only the latter reflects the counting statistics as an asymmetric Poisson distribution correctly, our simulation study focuses on two main cases. Firstly, high-dose momentum-resolved scanning transmission electron microscopy (STEM) of an MoS2 monolayer is considered for phase retrieval. In this case, it is found that the four losses perform differently with respect to chemical sensitivity and frequency transfer, which we interprete in terms of the substantially different signal level in the bright and dark field part of diffraction patterns. Remedies are discussed using further simulations, addressing the use of virtual ring detectors for the dark field, or restricting loss calculation to the bright field. Secondly, a dose series is presented down to 100 electrons per diffraction pattern. It is found that all losses yield qualitatively reasonable structural data in the phase, whereas only MSE and Poisson loss range at the correct amplitude level. Chemical contrast is, in general, reliably obtained using the Poisson concept, which also provides the most continuous spatial frequency transfer as to the reconstructed object transmission function.
536 _ _ |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)
|0 G:(DE-HGF)POF4-5352
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 1
536 _ _ |a 4D-BioSTEM (DE002325)
|0 G:(DE-Juel-1)DE002325
|c DE002325
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Diederichs, Benedikt
|0 P:(DE-Juel1)185768
|b 1
|u fzj
700 1 _ |a Sachse, Carsten
|0 P:(DE-Juel1)173949
|b 2
|u fzj
700 1 _ |a Müller-Caspary, Knut
|0 P:(DE-Juel1)165314
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.micron.2024.103688
|g Vol. 185, p. 103688 -
|0 PERI:(DE-600)1492133-9
|p 103688 -
|t Micron
|v 185
|y 2024
|x 0047-7206
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1028899/files/Influence%20of%20loss%20function%20and%20electron%20dose.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1028899/files/Influence%20of%20loss%20function%20and%20electron%20dose.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1028899/files/Influence%20of%20loss%20function%20and%20electron%20dose.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1028899/files/Influence%20of%20loss%20function%20and%20electron%20dose.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1028899/files/Influence%20of%20loss%20function%20and%20electron%20dose.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1028899
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186015
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185768
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173949
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165314
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5352
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICRON : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-3-20170113
|k ER-C-3
|l Strukturbiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-3-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21