001028902 001__ 1028902
001028902 005__ 20240725202008.0
001028902 0247_ $$2doi$$a10.26165/JUELICH-DATA/TOBXWP
001028902 037__ $$aFZJ-2024-04862
001028902 041__ $$aEnglish
001028902 1001_ $$0P:(DE-Juel1)185897$$aDaniel, Davis Thomas$$b0$$eCorresponding author$$ufzj
001028902 245__ $$aReplication Data and Code for: 'Machine learning isotropic g values of radical polymers'
001028902 260__ $$bJülich DATA$$c2024
001028902 3367_ $$2BibTeX$$aMISC
001028902 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1721888742_4783
001028902 3367_ $$026$$2EndNote$$aChart or Table
001028902 3367_ $$2DataCite$$aDataset
001028902 3367_ $$2ORCID$$aDATA_SET
001028902 3367_ $$2DINI$$aResearchData
001028902 520__ $$aThis data repository contains the data sets and python scripts associated with the manuscript 'Machine learning isotropic g values of radical polymers '. Electron paramagnetic resonance measurements allow for obtaining experimental g values of radical polymers. Analogous to chemical shifts, g values give insight into the identity and environment of the paramagnetic center. In this work, Machine learning based prediction of g values is explored as a viable alternative to computationally expensive density functional theory (DFT) methods. Description of folder contents (switch to tree view): Datasets : Contains PTMA polymer structures from TR, TE-1, and TE-2 data sets transformed using a molecular descriptor (SOAP, MBTR or DAD) and corresponding DFT-calculated g values. Filenames contain 'PTMA_X' where X denotes the number of monomers which are radicals. Structure data sets have 'structure_data' in the title, DFT calculated g values have 'giso_DFT_data' in the title. The files are in .npy (NumPy) format. Models : ERT models trained on SOAP, MBTR and DAD feature vectors. Scripts : Contains scripts which can be used to predict g values from XYZ files of PTMA structures with 6 monomer units and varying radical density. The script 'prediction_functions.py' contains the functions which transform the XYZ coordinates into an appropriate feature vector which the trained model uses to predict. Description of individual functions are also given as docstrings (python documentation strings) in the code. The folder also contains additional files needed for the ERT-DAD model in .pkl format. XYZ_files : Contains atomic coordinates of PTMA structures in XYZ format. Two subfolders : WSD and TE-2 correspond to structures present in the whole structure data set and TE-2 test data set (see main text in the manuscript for details). Filenames in the folder 'XYZ_files/TE-2/PTMA-X/' are of the type 'chainlength_6ptma_Y'_Y''.xyz' where 'chainlength_6ptma' denotes the length of polymer chain (6 monomers), Y' denotes the proportion of monomers which are radicals (for instance, Y' = 50 means 3 out of 6 monomers are radicals) and Y'' denotes the order of the MD time frame. Actual time frame values of Y'' in ps is given in the manuscript. PTMA-ML.ipynb : Jupyter notebook detailing the workflow of generating the trained model. The file includes steps to load data sets, transform xyz files using molecular descriptors, optimise hyperparameters , train the model, cross validate using the training data set and evaluate the model. PTMA-ML.pdf : PTMA-ML.ipynb in PDF format. List of abbreviations : PTMA : poly(2,2,6,6-tetramethyl-1-piperidinyloxy-4-yl methacrylate) TR : Training data set TE-1 : Test data set 1 TE-2 : Test data set 2 ERT : Extremely randomized trees WSD : Whole structure data set SOAP : Smooth overlap of atomic orbitals MBTR : Many-body tensor representation DAD : Distances-Angles-Dihedrals
001028902 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001028902 536__ $$0G:(GEPRIS)422726248$$aDFG project 422726248 - SPP 2248: Polymer-basierte Batterien (422726248)$$c422726248$$x1
001028902 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
001028902 588__ $$aDataset connected to DataCite
001028902 7001_ $$00009-0005-9476-980X$$aMitra, Souvik$$b1
001028902 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b2$$ufzj
001028902 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b3
001028902 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b4$$ufzj
001028902 773__ $$a10.26165/JUELICH-DATA/TOBXWP
001028902 8564_ $$uhttps://doi.org/10.26165/JUELICH-DATA/TOBXWP
001028902 909CO $$ooai:juser.fz-juelich.de:1028902$$pVDB
001028902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185897$$aForschungszentrum Jülich$$b0$$kFZJ
001028902 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)185897$$aRWTH Aachen$$b0$$kRWTH
001028902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b2$$kFZJ
001028902 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b2$$kRWTH
001028902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b3$$kFZJ
001028902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b4$$kFZJ
001028902 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b4$$kRWTH
001028902 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001028902 9141_ $$y2024
001028902 920__ $$lyes
001028902 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001028902 980__ $$adataset
001028902 980__ $$aVDB
001028902 980__ $$aI:(DE-Juel1)IET-1-20110218
001028902 980__ $$aUNRESTRICTED