001028934 001__ 1028934
001028934 005__ 20250204113912.0
001028934 0247_ $$2doi$$a10.1111/jace.19951
001028934 0247_ $$2ISSN$$a0002-7820
001028934 0247_ $$2ISSN$$a1551-2916
001028934 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04877
001028934 0247_ $$2WOS$$aWOS:001247850500001
001028934 037__ $$aFZJ-2024-04877
001028934 041__ $$aEnglish
001028934 082__ $$a660
001028934 1001_ $$0P:(DE-Juel1)190289$$aStern, Christian$$b0$$eCorresponding author
001028934 245__ $$aCorrelative characterization of plasma etching resistance of various aluminum garnets
001028934 260__ $$aWesterville, Ohio$$bSoc.$$c2024
001028934 3367_ $$2DRIVER$$aarticle
001028934 3367_ $$2DataCite$$aOutput Types/Journal article
001028934 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1725615600_32044
001028934 3367_ $$2BibTeX$$aARTICLE
001028934 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001028934 3367_ $$00$$2EndNote$$aJournal Article
001028934 520__ $$aPlasma etching is a crucial step in semiconductor manufacturing. High cleanliness and wafer-to-wafer reproducibility in the etching chamber are essential in order to successfully achieve nanometer-sized integrated functions on the wafer. The trend toward the application of more aggressive plasma compositions leads to higher demands on the plasma resistance of the materials used in the etching chamber. Due to its excellent etch resistance, yttrium aluminum garnet Y3Al5O12 (YAG) is starting to replace established materials like SiO2 or Al2O3 in this kind of application. In this study, reactive spark plasma sintering (SPS) was used to manufacture highly dense YAG ceramics from the respective oxides. In addition, yttrium was replaced with heavier lanthanoids (Er, Lu), intending to investigate the role of the A-site cation in the garnet type structure on the plasma erosion behavior. The produced materials were exposed to fluorine-based etching plasmas mimicking the conditions in the semiconductor manufacturing apparatus and the erosion behavior was characterized by atomic force microscopy (AFM), secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), and profilometry. The induced chemical gradient in the samples is limited to a few nanometers below the surface, which makes its characterization challenging. For advanced analysis, we developed a correlative characterization method combining SIMS and scanning TEM (STEM)–energy-dispersive spectroscopy (EDS) enabling us to examine the structural and chemical changes in the reaction layer locally resolved. In the case of lanthanoid aluminates, an altered reaction layer and reduced fluorine penetration compared to YAG were found. However, a correlation between the characteristics of the induced chemical gradient and the determined physical erosion rates was not evident.
001028934 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001028934 536__ $$0G:(GEPRIS)274005202$$aDFG project 274005202 - SPP 1959: Manipulation of matter controlled by electric and magnetic fields: Towards novel synthesis and processing routes of inorganic materials (274005202)$$c274005202$$x1
001028934 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001028934 7001_ $$0P:(DE-Juel1)194161$$aSchwab, Christian$$b1
001028934 7001_ $$0P:(DE-Juel1)174079$$aKindelmann, Moritz$$b2
001028934 7001_ $$0P:(DE-HGF)0$$aStamminger, Mark$$b3
001028934 7001_ $$0P:(DE-Juel1)131029$$aWeirich, Thomas$$b4
001028934 7001_ $$0P:(DE-Juel1)194615$$aPark, Inhee$$b5
001028934 7001_ $$0P:(DE-Juel1)167581$$aHausen, Florian$$b6
001028934 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b7
001028934 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b8
001028934 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b9
001028934 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.19951$$gp. jace.19951$$n11$$p7105-7118$$tJournal of the American Ceramic Society$$v107$$x0002-7820$$y2024
001028934 8564_ $$uhttps://juser.fz-juelich.de/record/1028934/files/20240328_paper_correlative_characterization.pdf$$yOpenAccess
001028934 8564_ $$uhttps://juser.fz-juelich.de/record/1028934/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202024%20-%20Stern%20-%20Correlative%20characterization%20of%20plasma%20etching%20resistance%20of.pdf$$yOpenAccess
001028934 8564_ $$uhttps://juser.fz-juelich.de/record/1028934/files/20240328_paper_correlative_characterization.gif?subformat=icon$$xicon$$yOpenAccess
001028934 8564_ $$uhttps://juser.fz-juelich.de/record/1028934/files/20240328_paper_correlative_characterization.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001028934 8564_ $$uhttps://juser.fz-juelich.de/record/1028934/files/20240328_paper_correlative_characterization.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001028934 8564_ $$uhttps://juser.fz-juelich.de/record/1028934/files/20240328_paper_correlative_characterization.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001028934 8564_ $$uhttps://juser.fz-juelich.de/record/1028934/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202024%20-%20Stern%20-%20Correlative%20characterization%20of%20plasma%20etching%20resistance%20of.gif?subformat=icon$$xicon$$yOpenAccess
001028934 8564_ $$uhttps://juser.fz-juelich.de/record/1028934/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202024%20-%20Stern%20-%20Correlative%20characterization%20of%20plasma%20etching%20resistance%20of.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001028934 8564_ $$uhttps://juser.fz-juelich.de/record/1028934/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202024%20-%20Stern%20-%20Correlative%20characterization%20of%20plasma%20etching%20resistance%20of.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001028934 8564_ $$uhttps://juser.fz-juelich.de/record/1028934/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202024%20-%20Stern%20-%20Correlative%20characterization%20of%20plasma%20etching%20resistance%20of.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001028934 8767_ $$d2024-07-22$$eHybrid-OA$$jDEAL
001028934 909CO $$ooai:juser.fz-juelich.de:1028934$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001028934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190289$$aForschungszentrum Jülich$$b0$$kFZJ
001028934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194161$$aForschungszentrum Jülich$$b1$$kFZJ
001028934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174079$$aForschungszentrum Jülich$$b2$$kFZJ
001028934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194615$$aForschungszentrum Jülich$$b5$$kFZJ
001028934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167581$$aForschungszentrum Jülich$$b6$$kFZJ
001028934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b7$$kFZJ
001028934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b8$$kFZJ
001028934 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b9$$kFZJ
001028934 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001028934 9141_ $$y2024
001028934 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001028934 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001028934 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001028934 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001028934 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
001028934 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001028934 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-22$$wger
001028934 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
001028934 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028934 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
001028934 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001028934 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001028934 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001028934 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
001028934 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-02
001028934 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001028934 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
001028934 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02
001028934 920__ $$lyes
001028934 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001028934 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x1
001028934 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x2
001028934 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x3
001028934 980__ $$ajournal
001028934 980__ $$aVDB
001028934 980__ $$aUNRESTRICTED
001028934 980__ $$aI:(DE-Juel1)IMD-2-20101013
001028934 980__ $$aI:(DE-Juel1)ER-C-2-20170209
001028934 980__ $$aI:(DE-Juel1)IET-1-20110218
001028934 980__ $$aI:(DE-82)080011_20140620
001028934 980__ $$aAPC
001028934 9801_ $$aAPC
001028934 9801_ $$aFullTexts