001     1028934
005     20250204113912.0
024 7 _ |a 10.1111/jace.19951
|2 doi
024 7 _ |a 0002-7820
|2 ISSN
024 7 _ |a 1551-2916
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-04877
|2 datacite_doi
024 7 _ |a WOS:001247850500001
|2 WOS
037 _ _ |a FZJ-2024-04877
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Stern, Christian
|0 P:(DE-Juel1)190289
|b 0
|e Corresponding author
245 _ _ |a Correlative characterization of plasma etching resistance of various aluminum garnets
260 _ _ |a Westerville, Ohio
|c 2024
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725615600_32044
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Plasma etching is a crucial step in semiconductor manufacturing. High cleanliness and wafer-to-wafer reproducibility in the etching chamber are essential in order to successfully achieve nanometer-sized integrated functions on the wafer. The trend toward the application of more aggressive plasma compositions leads to higher demands on the plasma resistance of the materials used in the etching chamber. Due to its excellent etch resistance, yttrium aluminum garnet Y3Al5O12 (YAG) is starting to replace established materials like SiO2 or Al2O3 in this kind of application. In this study, reactive spark plasma sintering (SPS) was used to manufacture highly dense YAG ceramics from the respective oxides. In addition, yttrium was replaced with heavier lanthanoids (Er, Lu), intending to investigate the role of the A-site cation in the garnet type structure on the plasma erosion behavior. The produced materials were exposed to fluorine-based etching plasmas mimicking the conditions in the semiconductor manufacturing apparatus and the erosion behavior was characterized by atomic force microscopy (AFM), secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), and profilometry. The induced chemical gradient in the samples is limited to a few nanometers below the surface, which makes its characterization challenging. For advanced analysis, we developed a correlative characterization method combining SIMS and scanning TEM (STEM)–energy-dispersive spectroscopy (EDS) enabling us to examine the structural and chemical changes in the reaction layer locally resolved. In the case of lanthanoid aluminates, an altered reaction layer and reduced fluorine penetration compared to YAG were found. However, a correlation between the characteristics of the induced chemical gradient and the determined physical erosion rates was not evident.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a DFG project 274005202 - SPP 1959: Manipulation of matter controlled by electric and magnetic fields: Towards novel synthesis and processing routes of inorganic materials (274005202)
|0 G:(GEPRIS)274005202
|c 274005202
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Schwab, Christian
|0 P:(DE-Juel1)194161
|b 1
700 1 _ |a Kindelmann, Moritz
|0 P:(DE-Juel1)174079
|b 2
700 1 _ |a Stamminger, Mark
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Weirich, Thomas
|0 P:(DE-Juel1)131029
|b 4
700 1 _ |a Park, Inhee
|0 P:(DE-Juel1)194615
|b 5
700 1 _ |a Hausen, Florian
|0 P:(DE-Juel1)167581
|b 6
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 7
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 8
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 9
773 _ _ |a 10.1111/jace.19951
|g p. jace.19951
|0 PERI:(DE-600)2008170-4
|n 11
|p 7105-7118
|t Journal of the American Ceramic Society
|v 107
|y 2024
|x 0002-7820
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1028934/files/20240328_paper_correlative_characterization.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1028934/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202024%20-%20Stern%20-%20Correlative%20characterization%20of%20plasma%20etching%20resistance%20of.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1028934/files/20240328_paper_correlative_characterization.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1028934/files/20240328_paper_correlative_characterization.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1028934/files/20240328_paper_correlative_characterization.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1028934/files/20240328_paper_correlative_characterization.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1028934/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202024%20-%20Stern%20-%20Correlative%20characterization%20of%20plasma%20etching%20resistance%20of.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1028934/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202024%20-%20Stern%20-%20Correlative%20characterization%20of%20plasma%20etching%20resistance%20of.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1028934/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202024%20-%20Stern%20-%20Correlative%20characterization%20of%20plasma%20etching%20resistance%20of.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1028934/files/Journal%20of%20the%20American%20Ceramic%20Society%20-%202024%20-%20Stern%20-%20Correlative%20characterization%20of%20plasma%20etching%20resistance%20of.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1028934
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190289
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)194161
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174079
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)194615
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)167581
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-22
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-2-20101013
|k IMD-2
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 2
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-2-20101013
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21