001028951 001__ 1028951
001028951 005__ 20250204113912.0
001028951 0247_ $$2doi$$a10.1016/j.jpowsour.2024.234709
001028951 0247_ $$2ISSN$$a0378-7753
001028951 0247_ $$2ISSN$$a1873-2755
001028951 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04891
001028951 0247_ $$2WOS$$aWOS:001266916100001
001028951 037__ $$aFZJ-2024-04891
001028951 082__ $$a620
001028951 1001_ $$0P:(DE-Juel1)180877$$aKiyek, Vivien$$b0
001028951 245__ $$aWaste minimization in all-solid-state battery production via re-lithiation of the garnet solid electrolyte LLZO
001028951 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2024
001028951 3367_ $$2DRIVER$$aarticle
001028951 3367_ $$2DataCite$$aOutput Types/Journal article
001028951 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721222315_1235
001028951 3367_ $$2BibTeX$$aARTICLE
001028951 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001028951 3367_ $$00$$2EndNote$$aJournal Article
001028951 520__ $$aOxide-ceramic based electrolytes such as Li7La3Zr2O12 (LLZO), are one of the most promising solid electrolytes for application in all-solid-state batteries. However, most of its constituents are listed as critical raw materials, highlighting the need to minimize waste during synthesis and processing. Therefore, we investigated the re-use of aged LLZO powder and aged LLZO green foils produced by tape-casting, an industrial processing route suitable for ASSBs. We established a new synthesis route to fully recovery Li-poor LLZO and pyrochlore phase La2Zr2O7 by simply adding a Li source during firing. By using recycled LLZO powder in a <200 μm thick cast tape, we were able to prove a similar ionic conductivity of 2.1 × 10−4 S cm−1 at room temperature and a critical current density of 0.75 mA cm−2 at 60 °C compared to fresh powder. This simple and efficient re-synthesis strategy might hold the potential to minimize waste streams of critical raw materials in future industrial production processes of solid-state batteries.
001028951 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001028951 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001028951 7001_ $$0P:(DE-Juel1)190603$$aHilger, Martin$$b1
001028951 7001_ $$0P:(DE-Juel1)173936$$aRosen, Melanie$$b2
001028951 7001_ $$0P:(DE-Juel1)177993$$aGross, Jürgen Peter$$b3
001028951 7001_ $$0P:(DE-Juel1)179291$$aMann, Markus$$b4
001028951 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b5
001028951 7001_ $$0P:(DE-Juel1)179598$$aSchwaiger, Ruth$$b6
001028951 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b7$$eCorresponding author
001028951 7001_ $$0P:(DE-Juel1)162228$$aGuillon, Olivier$$b8
001028951 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2024.234709$$gVol. 609, p. 234709 -$$p234709 -$$tJournal of power sources$$v609$$x0378-7753$$y2024
001028951 8564_ $$uhttps://juser.fz-juelich.de/record/1028951/files/main%20document_waste%20minimization%202024.pdf$$yOpenAccess
001028951 8564_ $$uhttps://juser.fz-juelich.de/record/1028951/files/main%20document_waste%20minimization%202024.gif?subformat=icon$$xicon$$yOpenAccess
001028951 8564_ $$uhttps://juser.fz-juelich.de/record/1028951/files/main%20document_waste%20minimization%202024.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001028951 8564_ $$uhttps://juser.fz-juelich.de/record/1028951/files/main%20document_waste%20minimization%202024.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001028951 8564_ $$uhttps://juser.fz-juelich.de/record/1028951/files/main%20document_waste%20minimization%202024.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001028951 8767_ $$d2024-07-30$$eHybrid-OA$$jDEAL
001028951 909CO $$ooai:juser.fz-juelich.de:1028951$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001028951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180877$$aForschungszentrum Jülich$$b0$$kFZJ
001028951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190603$$aForschungszentrum Jülich$$b1$$kFZJ
001028951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173936$$aForschungszentrum Jülich$$b2$$kFZJ
001028951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177993$$aForschungszentrum Jülich$$b3$$kFZJ
001028951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179291$$aForschungszentrum Jülich$$b4$$kFZJ
001028951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b5$$kFZJ
001028951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179598$$aForschungszentrum Jülich$$b6$$kFZJ
001028951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b7$$kFZJ
001028951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162228$$aForschungszentrum Jülich$$b8$$kFZJ
001028951 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001028951 9141_ $$y2024
001028951 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001028951 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001028951 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001028951 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001028951 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-28
001028951 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001028951 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028951 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-28
001028951 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-06
001028951 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-06
001028951 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-06
001028951 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-06
001028951 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2022$$d2024-12-06
001028951 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
001028951 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
001028951 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-06
001028951 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-06
001028951 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2022$$d2024-12-06
001028951 920__ $$lyes
001028951 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001028951 9201_ $$0I:(DE-Juel1)IMD-1-20101013$$kIMD-1$$lWerkstoffstruktur und -eigenschaften$$x1
001028951 9801_ $$aFullTexts
001028951 980__ $$ajournal
001028951 980__ $$aVDB
001028951 980__ $$aUNRESTRICTED
001028951 980__ $$aI:(DE-Juel1)IMD-2-20101013
001028951 980__ $$aI:(DE-Juel1)IMD-1-20101013
001028951 980__ $$aAPC