
Rheinische
Friedrich-Wilhelms-Universität Bonn

Master Thesis

Heterogeneous Memory Aware Prefetching on
High Performance Arm Processors

Author:
Berk Saglam

Supervisor:
Dr. Nam. Ho

First Examiner:
Prof. Dr. Estela Suarez

Second Examiner:
Dr. Sven Mallach

Date: April 10, 2024

Abstract

Modern computing often sees up to 80% of computation time spent on data retrieval,
emphasizing the importance of prefetching for enhancing CPU data delivery speeds by
moving data from slower storage to faster caches. Balancing timeliness and aggressiveness
is crucial for reducing access times. Utilizing heterogeneous memory, in this context
HBM2 and DDR5, serve different roles due to their bandwidth and capacity trade-
offs, underscoring the need for balanced memory management and awareness while
prefetching.
This work focuses on developing prefetching strategies for heterogeneous memory
configurations in high-performance Arm processors, targeting a system architecture
comprising 20 cores, with 16 cores dedicated to HBM2 and 4 cores dedicated to DDR5
memory. The primary objective is to reduce latency and improve system performance
by introducing two innovative optimization strategies for prefetching. These strategies
meticulously balance timeliness and aggressiveness by adaptively tuning the prefetch
degree and distance. These strategies adapt dynamically to the specific memory type and
available bandwidth with consideration of the prefetch accuracy, optimizing prefetching
operations for enhanced performance and efficiency. The Prefetcher are integrated with
the L2 cache and its performance is rigorously assessed through Gem5 simulations. These
evaluations compare the effectiveness of adaptive optimization strategies for both Stream
and PC-based Stride Prefetchers, utilizing the Arm Neoverse V1 as the computational
model.
Findings reveal adaptive prefetching is boosting system performance, notably with HBM2
and DDR5 Memory, while facing memory contention on DDR5. This research advances
prefetching strategies with the understanding of heterogeneous memory, advocating
further exploration to enhance high-performance computing efficiency and performance.

Acknowledgments

My heartfelt gratitude goes out to all those who have supported and contributed to
the completion of this thesis. Foremost, Dr. Nam Ho, my dedicated supervisor,
deserves special recognition. His invaluable guidance, expertise, and unwavering support
throughout the research process have been significant in this work. Dr. Nam Ho’s
commitment to my success has made a profound impact, and for that, I am deeply
grateful. The members of the institute Forschungszentrum Jülich played a pivotal role in
facilitating my research. Their provision of resources and essential facilities, along with
their assistance and cooperation, were crucial in conducting experiments and collecting
data. Acknowledgment is also due to the generous financial support received, without
which this research would not have been possible. Appreciation is extended to all the
members of the EPI, NOVAS Meetings for their invaluable assistance in searching for
solutions to problems encountered during the course of this research. Their collective
efforts were indispensable. I appreciate my second examiner, Dr. Sven Mallach, for
accepting this thesis as an examiner. Lastly, profound gratitude is expressed to the first
examiner, Prof. Dr. Estela Suarez, whose belief in my capabilities and the opportunity
provided allowed me, as a student of the University of Bonn, to conduct this thesis at
Forschungszentrum Jülich. This has been pivotal in my academic journey. This thesis
owes its existence to the collective support and encouragement of all these individuals
and organizations. Thank you for being integral to this transformative journey.

vii

Contents

1. Introduction 1

2. Theoretical Fundamentals 5
2.1. Memory System . 5

2.1.1. Basic Computer Architecture 5
2.1.2. The Memory Wall . 6
2.1.3. Memory Hierarchy . 7

2.2. Prefetching . 11
2.2.1. Prefetching Techniques . 11
2.2.2. Prefetching Balance . 13

2.3. Evolution and Significance of Arm Architecture 15
2.4. Gem5 Simulator . 15

2.4.1. SE (System Emulation) Mode 16
2.4.2. FS (Full System) Mode . 16

3. Methodology and Implementation 17
3.1. Methodology . 17

3.1.1. Gem5: Basic Prefetcher . 18
3.2. Simulated high performance Arm processor with Gem5 20

3.2.1. Arm Neoverse V1 Core . 20
3.2.2. Hybrid memory configuration 22

3.3. Implementation: Stream-based Prefetcher 23
3.4. Implementation: PC-based Stride Prefetcher 31
3.5. Prefetcher Statistics . 33
3.6. Prefetcher optimization . 39

4. Experimental Analysis and Evaluation 47
4.1. Experimental Environment . 47
4.2. HPC Benchmarks . 49

4.2.1. Simple Triad . 50
4.2.2. MINIFE SpMV . 52
4.2.3. Simple Triad - NUMA Version 54

ix

Contents

4.3. Evaluation . 55
4.3.1. Simple Triad . 57
4.3.2. MINIFE SpMV . 71
4.3.3. Simple Triad - NUMA Version 81
4.3.4. Resource Estimation . 85

5. Related Work 89
5.1. Berti: an Accurate Local-Delta Data Prefetcher 89
5.2. T-SKID: Predicting When to Prefetch Separately from Address Prediction 90
5.3. Classifying Memory Access Patterns for Prefetching 92
5.4. Feedback-Directed Prefetching . 92
5.5. Access Map Pattern Matching . 94
5.6. Clustering Modes in Knights Landing Processors 95

6. Conclusions and Future Directions 97

x

Contents

Appendix 99

A. Appendix Chapter 99
A.1. Hardware Configuration Parameters 99
A.2. Prefetcher Configuration Parameters 103
A.3. HPC Machine Details . 106
A.4. Barcelona Supercomputing Center - Sparse Matrix-Vector Multiplication 107

xi

1. Introduction

In the area of computer science, data-intensive processing stands as a critical cornerstone.
Simulations, in particular, represent indispensable tools that significantly enhance insights
across various research domains. Their role extends beyond fostering innovation, often
leading to groundbreaking scientific advancements, such as the recent developments in
hardware. In such computations, the access of data in time is a driving factor of the total
computation time. In some modern applications, up to 80% of the total computation time
is spent on data retrieval. Hence, the speed at which data can be delivered to the CPU
(Central Processing Unit) has become a major determinant, prompting the evolution of
faster storage devices [12].
A key challenge in this evolution has been the persistent latency issues in the interface
between storage solutions and the CPU [3, 12, 20]. This challenge, often exacerbated by
the rapid advancements in CPU capabilities as predicted by Moore’s Law, has led to a
significant performance bottleneck, commonly referred to as the ’Memory Wall’. The
Memory Wall underscores the disparity between the exponential increase in processing
power and the slower rate of improvement in memory access times. Consequently, this
gap has emerged as a critical barrier in computer architecture, substantially affecting
system performance and efficiency.
To address these challenges, advancements in memory hierarchy, including the devel-
opment of low-latency caches and prefetching techniques, have been explored. These
innovations aim to reduce latency and improve data access times, thereby enhancing
overall system performance.
Prefetching enhances system performance by proactively fetching data from slower
storage to faster caches, reducing access times significantly [12, 18, 27, 33]. However, it
is crucial that prefetching delivers data timely and accurately to be effective. The level of
prefetch aggressiveness is a delicate balance, as being too aggressive can lead to cache
evictions, increased energy consumption, and potential performance trade-offs [16, 18,
22, 33]. “Aggressiveness” in this context denotes the number of prefetches sent by the
Prefetcher w.r.t. the prefetch degree and distance. Under ideal conditions, prefetching
eliminates cache misses, making it a standard feature in high-performance processors
[25].

1

1. Introduction

Therefore, balancing timeliness and aggressiveness is reducing access times. Utilizing
heterogeneous memory, in this context HBM2 (High-Bandwidth Memory 2) and DDR5
(Double Data Rate 5), serve different roles due to their bandwidth and capacity trade-
offs, underscoring the need for balanced memory management, like shown in the work
[36]. By following the recommended strategies for memory allocation, thread pinning,
and selecting the appropriate clustering mode, developers can significantly enhance
application performance, especially in scenarios demanding high parallelism and memory
bandwidth. Therefore, the integration of memory-awareness into prefetching strategies
emerges as a promising approach to leverage these benefits further, laying the groundwork
for this research.

This work focuses on developing memory-aware Prefetcher and strategies to minimize
system latency across multi-node architectures with heterogeneous memory environments.
These Prefetcher are designed to optimize the balance between prefetch aggressiveness
and timeliness, utilizing adaptive strategies informed by metrics such as bandwidth
utilization and accuracy. Focusing on an implementation of the Arm (Advanced
RISC Machines) Instruction Set Architecture, provided by [15]. The study explores
Stream and PC-based Stride Prefetcher, analyzing their timeliness, aggressiveness, and
accuracy w.r.t. the developed adaptive strategies. The research utilizes the Gem5
Simulator. Results of this study underscore the importance of adaptive prefetching
in enhancing system performance by dynamically identifying near-optimal prefetch
degrees and distances across diverse workloads. This approach contrasts with static
configurations, which require workload-specific optimizations that are impractical to
implement universally. Furthermore, the introduced adaptive optimization strategies
have led to notable performance enhancements, most prominently with high-bandwidth
memory types like HBM2. However, the effectiveness of these strategies varies across
different memory types. Specifically, DDR5 encounters distinct obstacles under conditions
of high memory usage for memory-intensive applications, such as Simple Triad. This
is attributed to memory contention issues arising from elevated demand requests to the
DDR5 device.

To provide a comprehensive understanding, this thesis is structured methodically. Starting
with “Theoretical Fundamentals” chapter (2), delving into essential concepts such as
Memory Systems, Prefetching Strategies, the High-End Arm CPU Architecture, and
introduce the Gem5 Simulator. This foundational chapter lays the groundwork for
the subsequent chapters. The heart of the research lies in the “Methodology and
Implementation” chapter (3). Here, the implemented Arm architecture is briefly analyzed.
Furthermore, basic implementation ideas and optimization strategies for the implemented
Prefetcher are elucidated. In the “Experimental Analysis and Evaluation” chapter (4),
insights into the experimental environment and the used benchmarks for evaluation

2

are given. In addition, the performance of the implemented prefetching techniques are
analyzed, and their effectiveness evaluated. Moving forward, in the “Related Work”
chapter (5), existing research, methodologies, and findings relevant to this thesis are
meticulously compared to the approaches presented in this work. Lastly, the “Conclusions
and Future Directions” chapter (6) summarizes the key findings and draws conclusions
from the analyses and suggests potential directions for future research in this field.

3

2. Theoretical Fundamentals

This chapter is a foundational exploration essential for grasping the subsequent sections
of this thesis. Beginning with exploring the concept of memory systems and prefetching,
it is followed by the evolutionary trajectory and profound significance of Arm architecture.
Additionally, this chapter introduces the Gem5 simulation tool, an instrumental asset for
analyzing and evaluating diverse computer architectures.

2.1. Memory System

2.1.1. Basic Computer Architecture

The fundamental architecture of a computer can be described through the Von Neumann
model, which illustrates several key components: an I/O (Input/Output) interface, a
Processor (also known as the Central Processing Unit or CPU), and the Main Memory,
as depicted in Figure 2.1.

At the heart of the computer lies the CPU, containing an Arithmetic Unit and a Control
Unit. In more advanced systems, multiple Arithmetic and Control Units are present, each
known as a “Core”. Here, the terms “Processor” and “CPU” refer to the entire chip.

Serving as a bridge for data exchange, the I/O interface connects the computer with
external devices. It enables interaction with various peripherals, such as mice, keyboards,
and monitors.

For executing computational operations, the Arithmetic Unit is tasked with everything
from basic arithmetic to complex mathematical functions. The Control Unit, on the other
hand, manages the operations of the CPU, directing the flow of data within the system
and managing the execution of instructions.

The Main Memory plays a pivotal role in this architecture. It temporarily stores data and
instructions that are in active use, allowing access by the CPU. The efficient functioning of
the Main Memory is important for the overall performance of the computer, as it directly
impacts the speed at which data can be processed and retrieved. In this context, “latency”
refers to the duration required to transfer data from the main memory to the CPU. Lower

5

2. Theoretical Fundamentals

Figure 2.1.: Von Neumann Architecture: 1) Processor - Executes instructions and pro-
cesses data. 2) Arithmetic Unit - Performs mathematical operations. 3)
Control Unit - Manages the execution of instructions. 4) Main Memory -
Stores data and instructions for quick access. 5) Input/Output Interface -
Communication with external devices like keyboards, mice, and monitors.
Adapted from [35].

latency leads to a more rapid delivery of data and instructions, which are stored in the
main memory, to the CPU. This acceleration is key to enhancing the performance of
any given workload. A bottleneck in this process can lead to significant performance
degradation, as it hinders the timely delivery of essential data needed for computation.
Such a situation often arises when the maximum bandwidth of the system is reached,
leading to increased latency [14, 35].

2.1.2. The Memory Wall

While storage solutions have seen improvements in both capacity and overall bandwidth
speed, they still grapple with latency issues when interfacing with the CPU [3, 12, 20].
This latency gap has been a persistent challenge since 1970, a phenomenon represented
in Moore’s Law, which states that the number of transistors on a computer chip doubles
approximately every two years, thereby rapidly advancing computational power. However,
memory and storage devices, like RAM and various storage drives, have not scaled
comparably to processing units. Despite advancements in memory capacity and speed,
the latency between these devices remains too high, creating a performance bottleneck.
This challenge is commonly known as the “Memory Wall” [12, 35] and can be seen in
Figure 2.2.

6

2.1. Memory System

Figure 2.2.: The figure represents Moore’s Law, where the number of transistors on a
chip doubles every two years, significantly enhancing computational power.
However, memory performance lacks behind this rapid growth, resulting in
a visible gap between transistor density and memory advancement. Adapted
from [13].

2.1.3. Memory Hierarchy

To solve the “Memory Wall” problem, the best solution would be a low latency, high
capacity memory device, which is realizable but too expensive to implement. However,
an observation is that workloads to the CPU often access only a small proportion of the
memory at a time. Temporal locality is a term used for access of memory that is likely to
be accessed again soon. On the other hand, spatial locality means that nearby memory
regions are likely to be accessed soon [20, 35]. Given this knowledge, the ideal solution
is to have a memory hierarchy, where storage that is further away from the CPU has
higher latency but greater capacity, but storage that is closer to the CPU, like caches,
has low latency but smaller capacity. The idea hereby is to load data to the next level of
hierarchy if the data locality is likely to be exploited by the workload [3, 35]. Figure 2.3
illustrates this idea. Every layer of the memory hierarchy is explained from the lowest
level to the highest in the subsequent sections.

7

2. Theoretical Fundamentals

Figure 2.3.: Illustration of the Memory Hierarchy: Starting from lower-level devices with
higher capacity, lower cost, and higher latency, the hierarchy ascends to more
expansive, quicker latency, and smaller storage memory levels. Adapted
from [35].

Secondary Memory

Secondary memory is a key layer in the memory hierarchy of a computer by providing
long-term data storage without the need for power, unlike main memory, which requires
power to retain information. This characteristic allows secondary memory devices,
including SSDs (Solid-State Drives), hard drives, CD drives, flash drives, etc. to preserve
data even when the computer has no power. While these devices offer greater storage
density at a lower cost, they inherently suffer from higher latency compared to main
memory. During workloads data from the secondary memory must be loaded into the
main memory, for example RAM (Random Access Memory), before the processor has
access to it. The transition is a significant factor in the delay experienced during program
startups. SSDs, leveraging flash memory without moving parts, offer a compromise
between the larger capacity and lower cost of hard drives and the faster performance,
albeit at a higher price and with average capacity.

Main Memory - Physical Memory

Physical Memory, for example, RAM, is a critical layer in the memory hierarchy and
is used in the Stream-based Prefetcher implementation, more on that in Section 3.3. A
computer loads and processes data and programs that are currently in use in the physical

8

2.1. Memory System

memory. The speed of physical memory significantly exceeds that of the secondary
memory. However, it is volatile, leading to loss of data when the power is turned off.

Virtual memory allows systems to manage larger applications beyond the constraints of
physical memory, by efficiently swapping data between secondary memory and main
memory. The Memory Management Unit (MMU) translates virtual addresses to physical
addresses, thus ensuring that programs operate within a secure and isolated virtual space
without direct manipulation of physical memory locations.

Physical addresses are actual locations where data and programs reside. In contrast
to virtual addresses, physical addresses refer directly to these physical locations in the
hardware. This distinction is vital for understanding how the computer manages and
accesses memory [7, 35].

CPU Cache

The CPU cache is a small, high-speed memory resource located in proximity to the
CPU, designed to store frequently accessed data and instructions, reducing the time the
CPU spends waiting for this information from the main memory. Caches have their own
hierarchy, often called L1 (level one), L2 (level two), and L3 (level three) cache. The Last
Level Cache in a system is referred to as LLC, with a specialized designation as SLC
(System Level Cache) when discussing individual segments of the LLC allocated per core.
The L1 cache, directly integrated into the CPU chip, is the highest level cache, but the
smallest and fastest, providing the quickest data access but with limited storage capacity.
Moving down, the L2 cache, slightly larger and slower than L1. This is the cache level
where the Prefetcher considered in this work, more in Chapter 3, try to improve the cache
hit rate to achieve maximum performance. The L3 cache, often shared among cores,
offers a balance between a larger storage capacity and speed. Figure 2.4 illustrates such a
cache hierarchy.

A “hit” implies faster access to data compared to a “miss”, where data retrieval from
the main memory is required. Therefore, workload performance can be improved by
maximizing the hit rate, leading to lower latency.

To sum up, the cache hierarchy is designed to balance speed and storage capacity
effectively and boosts workload performance by reducing the time spent on memory
access, ensuring that the most frequently accessed data is available at the highest speed
possible. In higher levels of the cache hierarchy, the capacity decreases, while the latency
increases [7, 35].

9

2. Theoretical Fundamentals

Figure 2.4.: Illustration of the cache hierarchy. Higher levels have lower latency but
smaller storage capacity. The LLC is shared with other cores. L1I marks the
level one instruction cache and L1D the level one data cache. Adapted from
[16].

CPU

At the top of the memory hierarchy is the CPU and its closest memory, registers. These
are small and fast storage units used to hold temporary data and instructions during
computation and follow rules regulated by the ISA (Instruction Set Architecture) [7, 35].

10

2.2. Prefetching

2.2. Prefetching

Prefetching is a technique that improves performance by proactively fetching instructions
and data from comparatively slower storage locations, such as main memory, or higher-
level caches, to faster caches ahead of their actual need. This approach significantly
enhances overall access time by hiding latency behind ongoing computations, thereby
fostering superior system performance. It is important to note that prefetching typically
involves fetching full memory blocks rather than partial or individual data elements,
thereby ensuring the efficiency of data retrieval.
This technique can be implemented in hardware or even in software. Hardware prefetching
is built right into the CPU. This form of prefetching exploits various access patterns
including spatial and temporal locality. It predicts access patterns of memory by analyzing
historical data requests at the microarchitecture level. Software prefetching, however,
involves inserting special instructions into the program code by the compiler or the
programmer to guide the prefetching process. Such techniques aim to reduce the cache
miss rate, leading to fast data access and therefore to enhanced performance.

Prefetching can be utilized for data or instruction requests. Data prefetching deals with
fetching the data needed for computations, while instruction prefetching fetches the
commands that the CPU will execute next [16].

2.2.1. Prefetching Techniques

There are various hardware prefetching techniques, each offering unique benefits and
challenges depending on data access types. This work primarily focuses on Stride and
Stream-based hardware prefetching. However, notable prefetching techniques are:
Next-Line Prefetching: This technique preloads the next sequential memory block
by exploiting spatial locality. It is especially effective in scenarios where data or
instructions are stored sequentially, such as when processing elements of an array in a
loop. This approach minimizes the time needed to fetch subsequent elements, based on
the assumption that accessing a memory location is likely to lead to the next one. Let
𝑃next be the predicted next prefetch address, 𝐴current the current accessed read address,
and 𝑆 the size of the memory region. Then the address prediction can be calculated
as 𝑃next = 𝐴current + 𝑆 [16, 29]. Next-Line Prefetching is simple and cost-effective but
assumes sequential data access, limiting its use in non-sequential scenarios where it may
waste resources. It is best suited for environments with strong spatial locality, highlighting
the need for selective strategy application based on access patterns.

11

2. Theoretical Fundamentals

Stride Prefetcher: Stride prefetching is a technique that enhances memory access by
predicting future data requests based on identified access patterns, known as “strides”.
Consider a sequence of read requests like 𝑅[𝑖], 𝑅[𝑖 +𝑄], 𝑅[𝑖 + 2𝑄], 𝑅[𝑖 + 3𝑄], where 𝑅
denotes a read request, 𝑖 is the initial read address, and 𝑄 represents the stride [25].
To determine the stride value, one can calculate the difference between the current read
address and the previous one. This process may seem straightforward but requires precise
prediction. Irregular memory accesses that do not follow the identified stride pattern are
challenging this process. Done incorrectly, it can lead to performance loss due to useless
prefetches. Therefore, accurately training the pattern detection algorithm is significant
for effective prefetching.

Stride prefetching is beneficial in regular data access scenarios, such as matrix operations
in scientific computing, where data is accessed at predictable intervals. Thus, allowing
the prefetching mechanism to precisely predict future requests. For example, during
matrix multiplication tasks, stride prefetching can efficiently predict and prefetch the next
set of matrix elements based on the observed stride, thereby reducing memory access
latency and improving overall computational performance [16, 25].
Markov Prefetcher: Utilizing a history table that maps previously accessed locations
to their subsequent accesses, this technique predicts future accesses based on observed
patterns. These Prefetcher excel in complex but repetitive patterns, like linked data
structures or multidimensional arrays. In database applications with repetitive query
patterns, Markov Prefetcher can effectively predict future data accesses [16, 21].
Stream Prefetcher: Stream prefetching, like stride prefetching, is a method to optimize
memory access by prefetching future data requests. It focuses on recognizing sequences
of memory accesses, termed “streams”, which typically involve consecutive memory
locations. Once a stream is detected, stream prefetching predicts forthcoming memory
accesses, focusing on contiguous data access unlike the fixed intervals in stride prefetching.
The challenge for stream prefetching is similar to stride prefetching and lies in the correct
prediction of its access patterns. Thus, Stream Prefetcher are designed to dynamically
adjust their behavior based on the effectiveness of their predictions, balancing between
prefetching aggressiveness and system efficiency [16, 33].

12

2.2. Prefetching

Delta Correlation Prefetcher: Focusing on the differences, or “deltas”, between
successive memory addresses, these Prefetcher are adept at handling workloads with
irregular but delta-correlated memory accesses. This pattern is common in graph traversal
algorithms, where the access pattern is not linear but shows a predictable relationship
between successive accesses. By identifying these delta correlations, Delta Correlation
Prefetchers can effectively prefetch data in scenarios where traditional linear methods are
less effective [16, 17].

2.2.2. Prefetching Balance

In the context of prefetching, the term “aggressiveness” refers to the number of prefetches
sent by the Prefetcher w.r.t. the prefetch degree and distance. Aggressiveness is
determined by two major factors: prefetch degree and prefetch distance.
Degree: This metric defines the number of data blocks or memory locations the Prefetcher
fetches in the current prefetching process. For instance, a prefetch degree of four would
request the next four memory blocks subsequent to the current prefetching request.
Distance: The metric of distance describes how far ahead the Prefetcher requests a
memory block. It is essentially the gap between the current memory access and the
furthest memory location from which the Prefetcher may request a data block.
Consider the following access stream of memory requests 𝑅[𝑖+𝐷], 𝑅[𝑖+𝐷+1], ..., 𝑅[𝑖+𝐾].
As before, 𝑅 denotes a read request, and 𝑖 is the initial read address. The distance can be
observed by the address inside the brackets to read from. In this example, 𝐷 describes
the distance; therefore, the Prefetcher will start prefetching the data block beginning from
𝑅[𝑖 + 𝐷]. The number of data blocks that will be prefetched is described by the degree
𝐾 [25].
Overly aggressive prefetching can result in cache evictions and memory contentions,
adversely affecting the overall available bandwidth. Furthermore, heightened energy
consumption emerges as a notable side effect. However, adopting a less aggressive
approach may sacrifice potential performance gains [16, 18, 22, 33]. Consider the
following prefetching scenarios: At low to medium system bandwidth consumption, when
coupled with high prediction accuracy, increasing the prefetch degree can significantly
enhance performance. This method efficiently improves cache utilization without
exceeding the available system bandwidth. Conversely, at high bandwidth utilization,
increasing the prefetch degree often results in performance degradation. This is attributed
to cache eviction and heightened memory contention, as the system is challenged in
managing the high demand requests to the memory. Moreover, increasing the prefetch
degree under conditions of poor prediction accuracy proves to be counterproductive due
to cache pollution and thus replacing important data in the cache.

13

2. Theoretical Fundamentals

CPU TIME
Load
instructi
on (A)

Cache
miss (A)

Example: Late prefetch

Prefetch
predicted
data (A)

Store
prefetch
data (A)

(a) Late Prefetch

CPU TIME

Store
prefetch
data (A)

Example: Prefetch timely

Prefetch
predicted
data (A)

Cache
Hit (A)

Load
instruction
(A)

(b) Timely Prefetch

Figure 2.5.: Illustration of Prefetching Timeliness: The left Figure shows a late prefetch,
resulting in a cache miss due to the prefetch request occurring too close to the
data load instruction. The right Figure demonstrates a timely prefetch where
the data arrives in the cache just before the workload requires it, effectively
preventing a cache miss and enhancing system performance.

Understanding the concept of “aggressiveness” in prefetching necessitates the under-
standing of what “timeliness” means in this context. To illustrate this, refer to Figure
2.5. On the left side of this figure, a prefetch request for block A is depicted. The
arrow at the bottom represents the time required for the requested memory block to
arrive. It is noticeable that the load instruction for the data closely follows the prefetch
request, leading to a cache miss for data A because the data block has not yet been
written into the cache. Consequently, the CPU may stall the application while waiting
for the data to arrive, resulting in a performance loss. This scenario underscores the
importance of timely prefetching. On the right side of this figure, a timely prefetch
request is depicted, where the requested data block arrives into the cache before the load
instruction. Consequently, the cache experiences a hit, enabling the CPU to continue
operations without stalls, thereby enhancing performance by hiding the latency associated
with data arrival. However, caution is required. Prefetching too early may result in the
eviction of the necessary cache block, as other data blocks might need to be written into
the cache, and the cache replacement policy may choose to evict the prefetched memory
block.
The success of prefetching is largely dependent on its precise implementation. Factors
such as untimely data arrival, incorrect predictions, or suboptimal settings of prefetch
aggressiveness can adversely affect system performance [16, 18, 20, 33]. Therefore,
maintaining a careful balance among these key aspects of prefetching is crucial for
optimal functionality and efficiency.

14

2.3. Evolution and Significance of Arm Architecture

2.3. Evolution and Significance of Arm Architecture

The ARM (Advanced RISC Machine) architecture has its origin in the 1980s [2] and
has developed significantly in recent years, establishing itself in the realm of HPC (High
Performance Computing). This architecture is characterized by its RISC (Reduced
Instruction Set Computing) methodology, which is designed for efficiency and simplicity,
leading to reduced power usage and cost-effectiveness [6]. Such benefits have made
Arm a favored option for embedded systems [6]. Arm architecture has evolved from a
simple device to a fundamental part of mobile technology. Being energy-efficient and
still holding strong processing capabilities, it enables Arm to be adopted in modern HPC
systems [6, 8, 9, 31].
Moreover, the Arm architectural design is scalable and adaptable, enabling the de-
velopment of specialized Arm-based chips for specific HPC applications [8, 31], like
the implemented Arm-based chip (Section 3.2). The impact of Arm in HPC is quite
notable, offering a strong alternative to traditional x86 architectures, due to its balance of
energy efficiency and high performance. The use of Arm-based supercomputers, like
Japan’s Fugaku, illustrates the ability of Arm CPUs in dealing with complex, large-scale
computational tasks [9, 31].

2.4. Gem5 Simulator

Gem5 is a flexible simulation tool widely used in the field of computer architecture
research. Its design focuses on being highly adaptable and open to experimentation,
making it a valuable resource for both academic and industrial research. Managed by a
community of users and developers, Gem5 is regularly updated and improved, ensuring
it stays relevant and useful for ongoing research [24].
Using Gem5 in this work brings the following key benefits [24]:

1. Flexibility: Gem5 is a modular environment, allowing researchers to adapt it to
their specific needs for exploring various types of computer architectures.

2. Community Support: Gem5 is supported by a worldwide community. Therefore,
a lot of updates and contributions in this area of research are taking place, making
the tool more reliable. Moreover, there are Prefetcher available that have been
previously implemented by researchers.

3. Wide Range of Uses: Although Gem5 was first made for academic research, it
has grown to be useful in industry research and teaching too.

15

2. Theoretical Fundamentals

The simulation tool offers two primary modes of simulation, each designed to support
distinct research needs. Both of them are used in this work. In the subsequent subsections,
a brief explanation of the modes is given. More details on their impact on this work are
explained in Chapters 3 and 4.

2.4.1. SE (System Emulation) Mode

The SE mode of Gem5 is specifically designed for fast and efficient simulation of
individual workloads for a simple computer architecture. This mode simplifies the
simulation process by focusing on the CPU and memory system, reducing the complexity
of a simulation by bypassing an OS (Operating System). It is beneficial to gain in-depth
insight into the simulated microarchitecture. This mode should be used to evaluate
specific aspects of architectural design, such as pipeline structure, cache behavior, or ISA
(Instruction Set Architecture) [24].

2.4.2. FS (Full System) Mode

In contrast to the SE Mode, the FS mode of Gem5 offers a complex simulation environment
that includes the simulation of a complete computer system, including the OS, drivers,
peripherals, software, and other system-level components. It is beneficial for gaining
in-depth understanding of the interactions between software and hardware in a fully
integrated system, like system-level power management, hardware-software co-design, or
the impact of system-level architecture decisions on application performance [24]. The
latter is of utmost importance for this work.

16

3. Methodology and Implementation

In this chapter, the methodological framework central to this thesis is meticulously
outlined. The primary focus lies in the development of timely prefetching strategies,
specifically designed for heterogeneous memory in high-performance Arm processors.
At the heart of this methodology is a simulation-based evaluation, executed using the
Gem5 Simulator. This approach is instrumental in testing the effectiveness of both
Stream-based and PC-based Stride Prefetcher. Moreover, the chapter also delves into the
implementation and the optimization of these Prefetcher.
Distinctive contributions of this work include the novel implementation of a Stream-based
Prefetcher, an addition that is unavailable among the collection of Gem5 Prefetcher.
Additionally, the thesis introduces an enhanced mechanism for the timely and dynamic
adjustment of prefetching parameters. This mechanism is optimizing Prefetcher perfor-
mance in real-time, responding adaptively to varying workload conditions and memory
system states.
Moreover, this chapter offers an in-depth analysis of the implementation aspects related
to the Prefetcher and the optimization techniques formulated. This meticulous approach
is supported by simulation-based assessments, serving as a robust basis for empirical
investigation and precise enhancements. The techniques and practical applications
presented within this chapter make a substantial contribution to the field of study.

3.1. Methodology

The primary goal of this thesis is the development and in-depth evaluation of advanced,
timely prefetching strategies, designed for heterogeneous memory systems within high-
performance Arm processors. A simulation-based approach, utilizing the Gem5 Simulator,
is at the core of this methodology. The Gem5 environment, known for its highly adaptable
design and openness to experimentation, is thereby selected for emulating the processor
architectures.
During the developmental phase, the SE mode of the Gem5 Simulator plays a meaningful
role. This mode is utilized for verifying the functionality of the implemented Prefetcher,
providing detailed insights into its behavior through extensive debugging messages. As

17

3. Methodology and Implementation

the SE mode operates without an operating system, it restricts testing to hardware-specific
functionalities under a predefined workload. Consequently, this mode is limited to
simple test architectures with a singular type of memory device, but it suffices for initial
functional evaluations.

In contrast, the FS mode of the Gem5 Simulator offers a simulation of a complete
computer system. A critical component of Gem5 hereby is the Ruby subsystem, offering
a comprehensive model for the memory subsystem. Ruby facilitates the exploration
of alternative cache organizations, interconnection networks, and cache coherency
protocols. Notably, it includes the implementation of the Arm AMBA CHI protocol,
essential in defining cache and memory controllers as state machines. These controllers
manage CHI transactions and block allocation and replacement policies effectively.
In parallel, the Garnet subsystem of Gem5 provides an on-chip network interconnect
model, supporting detailed simulation of network traffic and timing effects. This is
achieved by modeling network routers at the micro-architectural level [39]. The full system
simulation scripts are generated using the benchmarking platform provided by [15]. These
exploration scripts, developed in Python, necessitate two primary inputs: a .yaml file for
defining the architectural setup and a .py file detailing the benchmark configurations.
These configurations might include specific architectural elements, such as the type of
Prefetcher employed and their linkage to various cache levels. It is noteworthy that
prefetching parameters are established within the benchmark configuration and passed
to the architectural configuration. The final stage of this research employs full system
simulations to evaluate the prefetcher performance. The architecture to be simulated,
described in the .yaml file, will receive an in-depth discussion in Section 3.2. This
structured simulation framework is pivotal for conducting controlled experiments and
gathering essential performance metrics. Such metrics are significant for assessing the
impact and efficacy of various prefetching techniques on Arm architectures equipped
with heterogeneous memory devices.

3.1.1. Gem5: Basic Prefetcher

In the Gem5 simulator, the execution of the calculatePrefetch(const PrefetchInfo
&pfi, std::vector<AddrPriority> &addresses) function is a key component in the
prefetching process. This function is invoked to calculate prefetching addresses based
on the PrefetchInfo parameter, which has information about the prefetch trigger. In
the calculatePrefetch() function, the prefetch logic undergoes detailed parsing. After
processing this logic, the function adds the resulting prefetch address to the prefetch
queue. This queue is referred to by the second parameter, std::vector<AddrPriority>.
There are two kinds of memory systems which invoke the calculatePrefetch()function.

18

3.1. Methodology

The Classic Memory System and the Ruby Memory System.

Gem5: Classic Memory System with BaseCache

In the classic memory system of Gem5, prefetching is managed by the BaseCache class.
This class includes a Prefetcher object, which is an instance of prefetch::Base. This
object is important as it determines the prefetching strategy.

During cache access events, such as a cache hit or miss, the cache system activates the
Prefetcher. This activation leads to the invocation of the calculatePrefetch function
within the Prefetcher, which is tasked with computing the addresses of memory blocks that
should be prefetched. The specific conditions and logic under which calculatePrefetch
is called are determined by the logic of the cache and the chosen prefetching strategy.

Gem5: Ruby Memory System

The Ruby memory system within the Gem5 simulator represents a highly configurable
framework, adept at modeling more complex memory systems. It provides a comprehen-
sive platform for simulating various cache coherence protocols and memory hierarchies.
Prefetching in this system is integrated into the Ruby architecture. Typically, cache
controllers and sequencers handle prefetching, issuing requests based on memory access
patterns. The logic for prefetching, which may include functions like calculatePrefetch,
is embedded in specific controller classes. These details are distributed across multiple
files and classes in the src/mem/ruby directory of the Gem5 source code [5]. In the
simulation of the described architecture, the Ruby system was utilized, implementing the
AMBA CHI protocol [10]. The implementation of this protocol was not part of the thesis
work and was provided by [15].

Gem5: Class Hierarchy

To gain a deeper understanding of the Prefetcher implementation presented in this thesis,
it is beneficial to delve into the class hierarchy of the Prefetcher within Gem5.

Base Prefetcher Class (Base): This class forms the foundation of the prefetching
framework. It defines the fundamental structures, such as PrefetchInfo. The Base class
also introduces virtual methods, which are critical for handling cache access notifications
and for retrieving prefetch requests. These methods are the core mechanism for all
subsequent Prefetcher implementations.

19

3. Methodology and Implementation

Queued Prefetcher Class (Queued): Advancing from the Base class, the Queued class
introduces a queue-based mechanism for managing prefetch requests. This approach
enables storing, organizing, and processing prefetch requests that are delayed.
In this thesis, the implemented Prefetcher are an extension of the Queued Prefetcher
Class. Furthermore, the optimization strategies for the Prefetcher (Section 3.6) are linked
to the statistical calculations performed in the Queued Prefetcher Class, demonstrat-
ing the interconnectedness and the criticality of the class hierarchy in the Prefetcher
implementation.

3.2. Simulated high performance Arm processor with
Gem5

The Arm Neoverse V1 Reference Design (RDV1) plays a significant role in the high-
performance and exascale computing sectors. At its core, the RDV1 utilizes high-
performance Armv8.4-A Neoverse V1 cores, which marks a notable advancement in
micro-architectural design compared to previous iterations of Arm architectures [39].
This thesis primarily focuses on heterogeneous memory aware prefetching, rather than
delving into the intricate details of CPU core design. Consequently, an exhaustive
discussion of every facet is beyond its scope. Therefore, a small overview is given and
illustrated by Figure 3.1. For more detailed exploration of the Neoverse V1 architecture,
reference [1] is recommended as a comprehensive resource.

3.2.1. Arm Neoverse V1 Core

Front End: The front-end of a CPU is responsible for preparing instructions for execution.
Its primary tasks include fetching instructions from the memory, decoding them into the
ISA format understandable by the CPU, denoted as MOP (Macro-Operation) in Figure
3.1, and performing branch prediction. Notably, Arm has significantly upgraded the
BPU (Branch Prediction Unit), increasing the size for the nano BTB (Branch Target
Buffer) from 16 to 96 entries and for the main BTB from 6000 to 8000 entries. This
advancement leads to fewer pipeline stalls, due to higher accuracy in predictions, and
thereby boosting overall performance. Additionally, the front end benefits from the
integration of a novel MOP cache and a wider 5-Way Decoder, which leads to a higher
throughput of instructions. [1].
Execution Engine: The execution engine is where the actual processing of instructions
occurs. It consists of various components such as the ALU (Arithmetic Logic Unit),
FPU (Floating-Point Unit), and SVE (Scalable Vector Extension) units. Additionally, the

20

3.2. Simulated high performance Arm processor with Gem5

execution engine inlcudes a ROB (ReOrder Buffer). In the Neoverse V1, the ROB takes
MOPs (Macro-Operations) as input and converts them into 𝜇OPs (Micro-Operations).
These 𝜇OPs delineate the finer, more detailed steps that the CPU must execute to
process the macro-operations. Micro-operations, specific to a particular CPU design,
are not visible at the ISA level. During the transformation of MOPs, the ROB reorders
them and optimize the execution of complex instructions, thus enabling out-of-order
executions. Herein lies a significant enhancement by Arm. By doubling the size of the
ROB, it promotes advanced handling of micro-operations, fostering efficient out-of-order
execution and complex instruction dependencies. Moreover, Arm has also improved
the size of the SVE units to 256 bits. This enables an impressive capability of 16
double-precision Flop/cycle [1, 39].

Figure 3.1.: Detailed architecture of the Arm Neoverse V1 Core [37], showcasing the
enhanced front-end with improved branch prediction, the execution engine
with expanded ReOrder Buffer and SVE units, and the advanced memory
subsystem with optimized cache sizes for high-performance computing.

21

3. Methodology and Implementation

Memory Subsystem: The memory subsystem includes all components involved in
storing and retrieving data, such as caches (L1, L2, L3), memory controllers, and the
connections to the main memory devices. The Neoverse V1 architecture has undergone
substantial enhancements in its memory subsystem, particularly in cache size and latency,
which are essential for the efficiency of HPC applications. Each core within this
architecture is configured with a private 64 KiB L1I and L1D cache, both 4-way set
associative, and an L2 cache that ranges from 512 KiB to 1 MiB. These caches, equipped
with SECDED (Single-bit Error-Correction, Double-bit Error Detection) ECC (Error
Checking and Correction) and write-back features, are designed to enhance data retrieval
and processing speeds. The SLC, which varies from 2 MiB to 4 MiB depending on the
specific chip implementation, plays an influential role in enhancing data management
efficiency. These advancements in the memory hierarchy, including improved bandwidth
and latency, directly impact the performance of memory-intensive HPC applications [1,
36, 39]. In the configuration for the simulation, the size of the l2D is set to 1 MiB and
the SLC is set to 2 MiB. Moreover, all Prefetcher are attached to the L2D.

3.2.2. Hybrid memory configuration

The interconnect component of the architecture, the Arm CoreLink Coherent-Mesh-
Network 650 (CMN-650), stands out for its high-bandwidth and low-latency characteris-
tics. It is specifically optimized for Armv8-A processors, such as the Neoverse V1, and
plays an essential role in integrating various memory elements like HBM memory stacks
and DDR5/4 memory into the system [39]. Figure 3.2 illustrates the mesh configuration
of one quadrant of the simulated CPU.

In the described architecture, each quadrant is connected to eight HBM2 memory
channels and one DDR5 memory channel. The blue routers, linked to the HBM2
channels, incorporate a pair of Neoverse V1 cores each. Orange routers, connected to the
DDR5 channel, also house two Neoverse V1 cores. Serving a critical backup role, the red
router acts as a fail-safe for the other cores in cases of malfunction for various reasons,
and it too contains two Neoverse V1 cores. Depicted as the conduit for inter-quadrant
connections, the purple router completes this setup.

The KNL (Knight’s Landing) processors, showcase notable enhancements in their memory
subsystem, as introduced in Section 5.6. However, a comparable implementation for
Arm-based devices is currently lacking. It is essential to note that the architecture
being discussed also utilizes the benefits of KNL’s SNC (Sub-NUMA Clustering) modes.
In Figure 3.2, the NUMA domains are distinctly illustrated: the domain for HBM2
is depicted in blue, consisting of 8 routers and thereby 16 cores, while the domain
for DDR5 is represented in orange, comprising 2 routers which equate to 4 cores.

22

3.3. Implementation: Stream-based Prefetcher

HBM2

HBM2

HBM2

HBM2

HBM2

HBM2

HBM2

HBM2

DDR5

HBM2

DDR5

Router

HBM2 channel

HBM2 router
+2 Cores

DDR5 channel

DDR5 router
+2 Cores

Yield router
+2 Cores

Connection to
another quadrant

Figure 3.2.: One Quadrant of the Simulated CPU with Arm CoreLink CMN-650 Con-
figuration: Illustrates the allocation of 16 Neoverse V1 cores to 8 HBM2
channels (blue) and 4 cores to 1 DDR5 channels (orange routers). The
red router serves as a fail-safe, and the purple router enables inter-quadrant
connections.

Collectively, these configurations account for a total of 20 cores within the displayed
quadrant. Enhancing the Prefetcher with memory device awareness could further decrease
latency, as this addition enables the Prefetcher to recognize the type of memory device
and adjust its aggressiveness accordingly. Comprehensive configuration details are
provided in exploration/architectures/numa-2n.yaml [4], referenced in Appendix
A.1. Additionally, Appendix A.2 outlines the specifications for the implemented memory
devices.

3.3. Implementation: Stream-based Prefetcher

The Stream-Based Stride Prefetcher integrates the Markov Prefetcher, utilizing a history
table, with the Stride Prefetcher, which operates exclusively on physical addresses
without consideration of a PC. In L2 cache design, indexing with physical addresses
increases efficiency by bypassing the need for virtual address translation, thereby further
reducing latency. This approach prevents incorrect fetching of physical pages in the
TLB (Translation Lookaside Buffer), as it does not rely on virtual addresses, which are
associated with virtual pages. Normally, virtual addresses require a lookup process to find

23

3. Methodology and Implementation

Figure 3.3.: Areas highlighted in blue represent the stages where optimizations are applied,
illustrating the key points of enhancement in the prefetching mechanism.

the corresponding physical page. Incorrect fetching leads to additional latency due to the
address translation process [28]. Consequently, the Prefetcher attached to the L2 cache
operates with physical addresses. The Stream-Based Stride Prefetcher aims to examine
stream accesses, extracting patterns in a strided approach, as elaborated in Section
2.2.1. For a visual representation, see Figure 3.3, which presents an activity diagram
highlighting the steps of the prefetching process triggered by the calculatePrefetch
function in this Prefetcher.
The prefetching process begins with the invocation of the calculatePrefetch function.
Within this process, only the physical address is extracted from the PrefetchInfo
parameter. Other details available in src/mem/cache/prefetch/base.hh [5] are not
considered. The subsequent step involves calling the readCache function, which reads
data corresponding to the extracted physical address from the history table. This table
is often referred to as a “cache” due to its resemblance to a Fully Associative Cache in
terms of behavior.
To identify the relevant data, the tag of the physical address is determined using
⌊log2(pageBytes)⌋ and stored as a function variable. The pageBytes parameter, pre-
defined at the architectural configuration, is passed to Gem5, making it accessible for
operations. In the current configuration, pageBytes is set to 4096 Bytes.
Each parameter stored in a table entry is detailed in Table 3.1. Every parameter inside
the entry is notated as entry.x, where x is the accessed parameter. The readCache

24

3.3. Implementation: Stream-based Prefetcher

function is responsible for verifying the presence of a valid entry (entry.valid) in the
table and matching the tag (entry.tag == tag). If the comparison yields false, the
function returns -1, indicating the absence of a corresponding entry and the necessity to
create a new one.
The addition of a new entry initiates with the writeCache function. This function creates
an entry populated with default values. Similar to previous operations, the tag is extracted
and stored in entry.tag, and the complete physical address is stored in entry.lastAddr.
The entry.lastAddr plays a crucial role in subsequent stride calculations and pattern
recognition. A entry.valid flag is set to true, indicating the legitimacy of the new entry
within the table. Depending on their respective types, other parameters within the entry
are initialized to zero or set to false.
To locate a suitable position for this new entry, the function iterates through the table.
In scenarios where the table is at full capacity, it becomes necessary to employ the LRU
(Least Recently Used) algorithm. LRU, a prevalent cache replacement policy, functions
by removing the item that was least recently accessed when the cache is saturated. Within
this implementation, the LRU entry is determined by identifying the entry with the
highest entry.lru value. Alternatively, if an invalid entry exists, it is replaced instead.
This decision-making process ensures that frequently accessed patterns are kept in the
table while less critical patterns are evicted. Upon identifying the appropriate position
for the new entry, the entry.lru counter is assigned the value of the function’s initial
static counter, which is incremented by one for the next replacement. However, in both
cases where an entry needs to be created, the calculatePrefetch function terminates.
In the case that an entry is found in the history table, then the index of the entry is passed
and accessed. Now the function calcConfCounters is called. The calcConfCounters
function, a critical component of the Stream-based Prefetcher, is adept at dynamically
managing the state of the Prefetcher, using the entry.state parameter, based on observed
memory access patterns, focusing on stride calculation and confidence level adjustments.
The description of the entry.state values can be found at the Table 3.2.
Stride calculation is a key process in the Stream-based Prefetcher, involving the com-
putation of the difference between the current address accessed and entry.lastAddr.
This difference is assigned to the variable new stride. The stride, new stride, is then
compared with the existing stride value in entry.stride, ensuring it is non-zero. A zero
stride, indicating repeated access to the same memory location, is not useful for pattern
detection. Therefore, a true value in entry.stride match signifies that a consistent
access pattern was previously detected and matches the current stride pattern.
Subsequently, entry.lastAddr is updated to reflect the current memory access. The
parameter entry.conf represents the confidence in the detected pattern. If entry.conf is
zero and entry.stride is also zero, indicating initial entry setup, the pattern is observed

25

3. Methodology and Implementation

for the first time. In this case, entry.conf is incremented by one, and entry.stride is
updated to new stride.
If entry.stride match is true and entry.conf is non-zero, it implies a previously
detected pattern. Here, entry.stride is updated to new stride, even though
entry.stride match already suggests this value. This redundancy ensures accuracy.
Additionally, entry.conf is incremented.
When entry.conf reaches or exceeds a threshold threshConf, set based on configuration
in benchmark.py, the state of the Prefetcher transitions to CALC AND PREF. The threshold,
typically set to two based on extensive testing in SE mode, optimizes the number of
prefetches for improved coverage. In the CALC AND PREF state, the Prefetcher actively
prefetches data based on the calculated stride, enhancing memory access efficiency.
Additionally, upon entering this state, entry.failCnt is reset to zero. This counter
tracks the number of times a detected pattern fails to match the stride, facilitating pattern
updates.

However, if the step mentioned before results in false, indicating a valid entry
(entry.valid == true) with a mismatch in stride (entry.stride != new stride), it
leads to entry.stride match holding the value false. This mismatch suggests that the
detected pattern may be outdated or incorrectly computed, possibly due to out-of-order
executions or requests exceeding physical page boundaries. In such cases, the same stride
pattern might continue under a different tag, leaving an incorrect entry in the table.

To address this, entry.conf is decreased, and entry.failCnt is incremented by one. If
entry.conf falls to 1 or below, or entry.failCnt reaches or exceeds threshConf, an
update is necessary to maintain the accuracy and coverage of prefetches. This update
involves setting entry.stride to new stride, entry.conf to one, entry.failCnt to
zero, entry.state to INIT, and entry.windowInit to false. This approach, updating
the pattern after two failures, is an optimization that yields higher accuracy and coverage
in prefetches compared to conventional Prefetcher.

26

3.3. Implementation: Stream-based Prefetcher

Name Type Function
tag Addr Tag for identifying the cache line.
lastAddr Addr Address of the last access.
windowStart Addr Start of the prefetch window.
windowEnd Addr End of the prefetch window.
windowInit bool Flag to indicate if the window is initialized.
stride int Stride length for prefetching.
stride match bool Flag to indicate if the current stride matches the historical stride.
state STATE Current state of the Prefetcher.
conf short Confidence level in the prefetch decision.
valid bool Validity of the entry.
failCnt int Count of prefetch failures.
lru uint64 t Least Recently Used counter.

Table 3.1.: Description of Parameters in the Prefetcher Entry

State Description
INIT (Initialization) The starting state, where the Prefetcher is in a learning phase,

gathering data about strides to identify consistent patterns.
Transition out of this state occurs when a consistent stride is
established.

CALC AND PREF
(Calculate and Prefetch)

Entered when a high confidence level is reached, indicating
a stable stride pattern. In this state, the Prefetcher actively
prefetches data based on the calculated stride.

Table 3.2.: States of the Stream-based Prefetcher

Upon completion of all internal updates relevant to the entry, a comparison is executed
between entry.state and the INIT state, concurrently assessing if entry.valid is
set. A positive result in this evaluation signifies the termination of the prefetching
process, indicating insufficient confidence in the established stride pattern. Conversely,
should the entry.state equate to CALC AND PREF and entry.valid be set, and if this
evaluation yields a negative outcome, the prefetching process is similarly concluded.
This mechanism serves to ascertain that prefetching is initiated only when sufficient
confidence, as delineated in the calcConfCounters function, is established.

In the event of a favorable comparison, the prefetching process is initiated. The Prefetcher
retrieves the values for “lookahead”, where lookahead refers to distance and will be used
interchangeably in the following text, and degree, parameters defined and incorporated
through the benchmark or architectural configuration. Note that the prefetch addresses
are calculated in byte, therefore the lookahead is multiplied by the cache line size.
An optimization is implemented by employing a monitoring window approach for

27

3. Methodology and Implementation

prefetch trigger addresses. This feature is enabled but can be disabled in the benchmark
configuration; if enabled, the corresponding logic for prefetching is executed. In contrast,
a conventional state-of-the-art prefetching algorithm is invoked. Upon the completion of
these algorithms, the prefetching process is terminated. The subsequent section delineates
two distinct prefetching methodologies:
Window-based Prefetching: The concept of the window-based Prefetching approach in
stream prefetching, as inspired by the paper [33], involves dynamically tracking memory
accesses within a specific range, like explained in Section 5.4.
Within the Stream-based Prefetcher, the function doPrefetch is implementing the window-
based prefetching algorithm. This function manages a monitoring window for each entry,
utilizing the entry.windowInit field to indicate whether the window has been initialized.
The fields entry.windowStart and entry.windowEnd define the start and end of the
monitoring region, respectively. If the window is not initialized, entry.windowStart and
entry.windowEnd are set to the current trigger address (pf addr), and entry.windowInit
is switched to true. The function handles data streaming in both forward and reverse
directions, as indicated by the sign of entry.stride. The elucidation below focuses on
the forward direction. The reverse direction is trivial and follows the same principle.
Figure 3.4 depicts the windowing approach utilized for prefetching and illustrates three
distinct zones within the monitoring window. The first zone, highlighted in blue,
represents the monitoring window itself, where the span between entry.windowStart
and entry.windowEnd matches the lookahead. The second and third zones, shown in
gray and red respectively, correspond to addresses beyond entry.windowEnd and
addresses below entry.windowStart.
The algorithm begins by evaluating the current prefetch trigger address (pf addr). If
pf addr falls below entry.windowStart, it is considered outside the monitoring region
and thus disregarded, leading to the termination of the calculatePrefetch function.
This scenario is exemplified as Prefetch Trigger 1 in Figure 3.4. Conversely, if pf addr
is within or beyond the monitoring window, the algorithm proceeds to determine whether
pf addr is either less than entry.lastAddr, as demonstrated by Prefetch Trigger 2, or
exceeds entry.lastAddr and resides within the gray zone, illustrated by Prefetch Trigger
3. Should either condition be met, pf addr is tied up to entry.lastAddr. Consequently,
pf start addr is updated to pf addr. If not, the logic continues from entry.lastAddr
and thus pf start addr remains as pf addr. This strategy ensures the maintenance of
sequential prefetching integrity, pivotal in out-of-order execution contexts, and mitigates
the occurrence of unnecessary prefetches.
To prevent prefetching across page boundaries, the algorithm checks if the pf addr +
lookahead is within the same page as pf addr. If the page boundary is exceeded, the
algorithm calculates the remaining pageBytes to prefetch, enhancing efficiency. The

28

3.3. Implementation: Stream-based Prefetcher

next phase involves “warming up” the window, where the “degree of run-up” (degRunUp)
is calculated, dividing the window into memory block segments. The initial degree is
superseded by (adj degree), and once the window is “warmed up”, the original degree
is reinstated. The “warming up” process gradually builds certainty about the observed
access pattern. As the window “warms up” and gains more certainty about the pattern,
the algorithm switches to using the prefetch distance as determined by the benchmark
parameters. This gradual adaptation allows for a more accurate prediction and reduces
unnecessary prefetches.

The address to prefetch (new addr) is determined by equation 3.1, where 𝑑 ranges from
one to adj degree, and prefetch stride is the adjusted entry.stride.

new addr = pf start addr + 𝑑 × prefetch stride (3.1)

Finally, if new addr does not exceed the page boundary, it is enqueued for prefetching.
Otherwise, the calculation ceases. The entry.windowEnd pointer is now updated to
new addr. If the distance between entry.windowEnd and entry.windowStart exceeds
the lookahead, entry.windowStart is updated, aligning with the methodology in [33]
and is illustrated at Figure 3.4b.

29

3. Methodology and Implementation

> entry.windowEndentry.windowStart < Monitoring Region

entry.windowStart entry.windowEnd

lookahead

Prefetch
Addresses

Prefetch Trigger

Ignore
Prefetch

Prefetch Trigger 1

Ignore
Prefetch

entry.lastAddr Prefetch Trigger 3

Continue from entry.lastAddr

Prefetch Trigger 2

Continue from entry.lastAddr

(a)

> entry.windowEndentry.windowStart < Monitoring Region

entry.windowStart Update: entry.windowEnd
lookahead <
entry.windowEnd - entry.windowStart

Prefetch
Addresses

> entry.windowEndentry.windowStart < Monitoring Region

Update: entry.windowStart entry.windowEnd

Prefetch
Addresses

lookahead

(b)

Figure 3.4.: Visualization of the dynamic window-based prefetching algorithm with
three distinct zones. The first zone, highlighted in blue, represents the
monitoring window itself, where the span between entry.windowStart
and entry.windowEnd matches the lookahead. The second and third
zones, shown in gray and red respectively, correspond to addresses be-
yond entry.windowEnd and addresses below entry.windowStart. Figure
3.4 illustrates the three prefetch trigger scenarios: Trigger 1 identifies ad-
dresses below the Monitoring Region and ending the process; Trigger 2
and Trigger 3 involve addresses within or just beyond the window, leading
to adjustments in the monitoring window based on whether the address is
before or after entry.lastAddr, respectively. This ensures prefetch effi-
ciency by continuing from entry.lastAddr, thereby maintaining prefetch
sequence integrity and minimizing redundant prefetches. Figure 3.4b shows
the updating process of the Monitoring Region for valid prefetches within
page boundaries, and adjusting entry.windowStart when lookahead <
entry.windowEnd−entry.windowStart.

30

3.4. Implementation: PC-based Stride Prefetcher

State-of-the-art Prefetching: The doPrefetchNoWindow method within the Stream-
based Prefetcher calculates prefetch addresses without employing a window-based
approach. This method bases its calculations on predetermined parameters, like degree
and lookahead, defined in the Prefetcher configuration.

The function iterates up to the specified degree. For each iteration, the prefetch address
(new addr) is calculated by equation 3.2, where 𝑑 ranges from 1 to the fixed degree, and
prefetch stride is defined exactly like in the windowed case.

𝑛𝑒𝑤 𝑎𝑑𝑑𝑟 =

{
𝑝 𝑓 𝑎𝑑𝑑𝑟 + 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 + 𝑑 × 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ 𝑠𝑡𝑟𝑖𝑑𝑒, if 𝑒𝑛𝑡𝑟𝑦.𝑠𝑡𝑟𝑖𝑑𝑒 > 0
𝑝 𝑓 𝑎𝑑𝑑𝑟 + 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 − 𝑑 × 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ 𝑠𝑡𝑟𝑖𝑑𝑒, if 𝑒𝑛𝑡𝑟𝑦.𝑠𝑡𝑟𝑖𝑑𝑒 < 0

(3.2)

Prefetch addresses are calculated differently depending on the stream direction, as shown
in the equation 3.2 above, which is determined by the sign of entry.stride. Furthermore,
the logic ensures that prefetch addresses do not cross page boundaries, which is a critical
key point. If the new address crosses a page boundary, the prefetching loop breaks, and
no further addresses are calculated or prefetched for this iteration. If the new prefetch
address remains within the same page, it is enqueued for prefetching.

3.4. Implementation: PC-based Stride Prefetcher

The PC-based Stride Prefetcher is utilizing PC (Program Counter) values to predict and
enhance memory access patterns. This mechanism, distinct from the Stream-Based
Stride Prefetcher, associates memory accesses with the initiating PCs, thereby offering a
context-sensitive approach to prefetching. Adapted from its original version in the Gem5
repository, this implementation now includes enhancements for statistical data collection
(see Section 3.5) and has been optimized as detailed in Section 3.6. The process flow of
this Prefetcher is depicted in Figure 3.5.

In this Prefetcher, the calculatePrefetch function initiates the operation by extracting
parameters from PrefetchInfo, including pf addr (the prefetch trigger address), PC,
and requestor id. The requestor id, which is always set to true in this work, is
differentiating PC Tables based on the identity of the requesting component. The system
also employs a security check on pf addr through the is secure flag to balance security
considerations with performance.

The PC-based Stride Prefetcher leverages the PC and is secure flag to accurately locate the
corresponding entry in the PC Table. If a valid PC is not present, the calculatePrefetch

31

3. Methodology and Implementation

Figure 3.5.: Activity Diagram of the PC-based Stride Prefetching Process: Areas high-
lighted in blue represent the stages where optimizations are applied, illustrat-
ing the key points of enhancement in the prefetching mechanism.

function is immediately terminated, as a valid PC is influential for the prefetching process.
Detailed parameters of an entry are outlined in Table 3.3.
In scenarios where an existing entry is not found in the PC Table, the next steps
are governed by the current state of the table and the replacement strategy, which is
RandomRP in this implementation. If the table has space, the Prefetcher initiates the
creation of a new entry. This new entry is then initialized with entry.lastAddr set to
the prefetch trigger address pf addr, and other parameters such as entry.stride to zero
and entry.confidence to the initial confidence level.

32

3.5. Prefetcher Statistics

Alternatively, the table is full, meaning an update of an existing entry. The Prefetcher
modifies entry.lastAddr to reflect the new pf addr. The other values are set like in the
case before to their initial values.
Through these processes, the Prefetcher ensures the PC Table is consistently up-to-date,
aligning with the ongoing memory access patterns. This dynamic management of the PC
Table is key to the Prefetcher efficiency, enabling it to adaptively predict and prefetch
data.
Next, the Prefetcher calculates the stride and adjusts the confidence level based on the
match with the existing stride value in the entry. This is governed by the threshConf
parameter, a configuration setting that defines the minimum confidence threshold for
pattern recognition. The Prefetcher terminates if the confidence level falls below
this threshold, thus minimizing ineffective prefetching. Successful matches lead to
prefetching as outlined in the state-of-the-art Prefetching Section for the Stream-Based
Stride Prefetcher.

Parameter Type Initial Value
lastAddr Addr Address of the last memory access
stride int Calculated stride between accesses
confidence short Confidence level of the stride prediction

Table 3.3.: Key Parameters and Initial Values in PC-based Stride Prefetcher

3.5. Prefetcher Statistics

The prefetching mechanism in Gem5, fundamentally encapsulated within the Base class
of the prefetch module, meticulously calculates and maintains a variety of prefetch-related
statistics. However, the global scope of these statistical values in the standard Gem5
implementation does not suffice for the specific requirements of this work. To address
this, the project significantly extends the basic prefetching statistics of Gem5, tailoring
them to meet distinct experimental scenarios and research objectives. This customization
is particularly evident in the handling of prefetch statistics, demonstrating a more detailed
and scenario-specific approach.
These modifications have been implemented into the Queued class and are made available
to all Prefetcher inheriting from it. A notable enhancement is the calculation of prefetch
statistics for each NUMA node separately, on an epoch-by-epoch basis. An epoch is
the number of cycles where statistics are accumulated. The optimization strategies, as
detailed in Section 3.6, leverage these statistical values to fine-tune the Prefetcher at the
end of each epoch, followed by a reset of the statistical counters. This approach enables

33

3. Methodology and Implementation

epoch-based tuning of the Prefetcher, offering a dynamic and responsive prefetching
strategy that adapts to changing access patterns and workload characteristics over time.
Such epoch-based tuning is advantageous as it allows the Prefetcher to continuously
evolve and optimize its behavior, leading to potentially improved cache performance and
reduced memory access latencies.
Furthermore, event functions are integrated into the AMBA CHI protocol and the Ruby
cache interface to calculate fundamental statistics, including demand accesses,
demand misses, sent prefetches, late prefetches, timely prefetches and
bandwidth measurements. It allows for the tracking and analysis of cache events and
state changes, thereby enriching the overall understanding of cache dynamics.

Demand Misses and Accesses: In the context of cache management, two key statis-
tics are tracked: demand misses and demand accesses. Both are updated within the
Queued::probeNotify function, which is invoked upon each cache access.
The demand misses statistic increments each time a cache access results in a miss. A
cache miss occurs when the requested data is not found in the cache, necessitating
retrieval from a slower memory source. This statistic is important for understanding the
frequency of demand misses encountered by the Prefetcher.
Regarding the demand accesses statistic, it is incremented for every cache access,
irrespective of whether it results in a hit or a miss. This reflects the total number of
demand access requests handled by the Prefetcher.

Given these statistics, the demand miss rate is calculated as follows:

demand miss rate =
demand misses

demand accesses

This rate measures the proportion of cache accesses that result in misses.
Furthermore, the demand hit rate can be derived from the demand miss rate:

demand hit rate = 1 − demand miss rate

Thus, demand hit rate represents the proportion of cache accesses that successfully
retrieve the desired data, indicating the effectiveness of the cache in fulfilling demand
access requests.
Sent Prefetches: Updated within the Queued::notifyCounterPfDispatch function,
sent prefetches undergoes an increment each time a prefetch request is dispatched. It
effectively quantifies the total number of prefetch requests sent by the Prefetcher.

34

3.5. Prefetcher Statistics

Useful Prefetches: This metric indicates the effectiveness of the prefetching strategy. It
is calculated based on whether the prefetched data is accessed before being evicted from
the cache and is defined by the following equation:

useful prefetches = timely prefetches + late prefetches

It is imperative to underscore the significance of late prefetches within this context, due
to their potential for subsequent access (temporal locality) before being evicted from the
cache.

Late Prefetches: Late prefetches are identified when data is fetched into the cache after
the CPU has already requested it. Being fetched too late means that the prefetched
data is not beneficial for the current CPU operation, but could still be useful for further
accesses. The late prefetches statistic is updated in the Queued::notifyCounterPfLate
function. This function is called when a prefetch is identified as late, meaning the data
was prefetched after it was needed. This statistic helps in assessing the timeliness of the
prefetching mechanism. In the formula below, the late rate is set to zero when there are
no useful prefetches to avoid division by zero. Otherwise, it is the ratio of late prefetches
to useful prefetches, providing a measure of the prefetching mechanism’s timeliness and
effectiveness.

late rate =

{
0, if useful prefetches = 0

late prefetches
useful prefetches , otherwise

Timely Prefetches: The timely prefetches statistic is incremented by the
Queued::notifyCounterPfTimely function. This function is invoked when a prefetch
operation is deemed timely, which means that the prefetched data was available in the
cache precisely when it was required by the CPU. A high count in this statistic implies
that the Prefetcher is effectively predicting and meeting the CPU’s data requirements in a
timely manner, thereby enhancing the overall performance of the system.

Useless Prefetches: While not explicitly updated in the provided code snippets, the
useless prefetches statistic is typically incremented in scenarios where prefetched data
is not utilized before eviction from the cache. This metric plays a significant role in
evaluating the proportion of prefetch requests that fail to contribute to cache hits, thereby
offering insight into the overall efficiency of the prefetching strategy. The equation below
defines the calculation of the metric.

35

3. Methodology and Implementation

useless prefetches =


sent prefetches − useful prefetches, if sent prefetches ≥

useful prefetches
0, otherwise

Accuracy Rate: The statistic (accuracy rate) measures how effective the Prefetcher is
predicting data to improve cache hits. It is calculated as the ratio and is defined by the
equation below.

accuracy rate =

{
0, if sent prefetches = 0
useful prefetches
sent prefetches , otherwise

Coverage Rate: In which extend the prefetches are covering demand misses is defined
by the statistic coverage rate. It considers both useful prefetches and demand misses.
The formula below calculates the ratio of useful prefetches to the total opportunities for
prefetching, which is the sum of useful prefetches and demand misses.

coverage rate =

{
0, if useful prefetches + demand misses = 0

useful prefetches
useful prefetches+demand misses , otherwise

Prefetch Rate: Measuring the efficiency of the Prefetcher in initiating prefetch request,
the prefetch rate statistic calculates the ratio of sent prefetches and demand accesses.
This metric provides insights into how often prefetches are sent in relation to the total
demand accesses.

prefetch rate =

{
0, if demand accesses = 0

sent prefetches
demand accesses , otherwise

Memory Device Awareness: As discussed in Section 3.2, the architecture comprises 20
cores divided into two memory nodes. Node zero corresponds to the HBM2 memory with
16 cores, while node one is associated with DDR5 with four cores. This distinction is
represented in the metric devType, which informs the Prefetcher about the specific memory
device to target for prefetching operations. The node ID can be retrieved using the
function Base::mapAddressToNumaID(Addr addr, bool is secure). By evaluating
the address and the security flag, the Prefetcher can determine the node IDs, thereby
gaining awareness of the memory devices involved.

36

3.5. Prefetcher Statistics

Memory Device Bandwidth Measurement: In optimizing Prefetcher decisions, under-
standing memory device characteristics is essential, particularly in bandwidth measure-
ment. For Gem5 simulations, measuring a bandwidth is achievable through the statistics
defined in Gem5. However, this method is not transferable to real architectures, which
lack the statistical capabilities of Gem5.

The role of TBE (Translation Buffer Entries) in cache controllers is critical, especially
during cache misses and subsequent memory requests. When a cache miss occurs, the
system retrieves data from lower levels of the memory hierarchy, with TBEs tracking
these requests. The Prefetcher receives updates on memory request status through
TBE ALLOC and TBE DEALLOC events. A TBE ALLOC event triggers an increment,
and a TBE DEALLOC event a decrement in a statistical counter. This mechanism, im-
plemented in Queued::notifyCounter(const gem5::memory::PacketPfCounterPtr
&pkt), informs Prefetcher about in-flight memory requests. The goal is to stress test the
architecture, determining its capacity for handling in-flight memory requests. Based on
the memory device type, thresholds for low, medium, and high bandwidth are established,
aiding the Prefetcher in bandwidth utilization estimation.

Initially, the tbe usage pf metric was developed to monitor these parameters. However,
it was found to track TBE information on a per-core basis, not system-wide, due to
per core connection to their private L2 cache. To overcome this, a revised method
measures memory device latency from TBE ALLOC to TBE DEALLOC, offering a
more comprehensive view of system-wide memory interactions.

The statistic tbe latency total accumulates the total latency for all TBE DEALLOC
events, representing the sum of time intervals from TBE ALLOC to TBE DEALLOC.
This metric provides an aggregate measure of time efficiency for the prefetching mecha-
nism. In parallel, tbe dealloc num counts the occurrences of TBE DEALLOC, reflecting
the frequency of memory request completions.

The average latency, tbe latency average, is calculated as follows:

𝑡𝑏𝑒 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =

{
0, if 𝑡𝑏𝑒 𝑑𝑒𝑎𝑙𝑙𝑜𝑐 𝑛𝑢𝑚 = 0
𝑡𝑏𝑒 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑡𝑜𝑡𝑎𝑙

𝑡𝑏𝑒 𝑑𝑒𝑎𝑙𝑙𝑜𝑐 𝑛𝑢𝑚
, otherwise

This formula ensures zero average latency when no TBE DEALLOC events occur,
avoiding division by zero. Otherwise, it computes the average latency by dividing
tbe latency total by tbe dealloc num. A higher tbe latency average during simu-
lation suggests increased memory contention.

Applying this methodology in a high-stress FS-mode simulation across diverse memory
devices results in an intricate latency curve. This curve is categorized into low, medium,
and high utilization brackets, significantly enhancing the comprehension of bandwidth

37

3. Methodology and Implementation

Figure 3.6.: Comparative latency measurement model for HBM and DDR Memory
Devices. The left side of the figure illustrates the latency curve for the HBM
memory device, while the right side depicts the DDR memory device. In
both plots, the blue curves represent the actual TBE latency observed during
the simulation. The yellow curves indicate the values calculated by the
average latency model. The red range arrows are used to mark the thresholds
for low, medium, and high bandwidth utilization, based on the identified
saturation points in the latency curves.

utilization for each memory device. Figure 3.6 illustrates the latency measurement model
as described.

Each plot in Figure 3.6 delineates the relationship between latency and peak bandwidth
during the simulation. The left side of the figure presents data for the HBM memory
device, while the right side focuses on the DDR memory device. The blue curves
represent the actual TBE latency, and the yellow curve depicts the values from the
introduced average latency model. Identifying the saturation points on these curves
allows for categorization into three thresholds, defining low, medium, and high bandwidth
utilization, as indicated by the red range arrows.

For HBM2, the low bandwidth threshold is identified at less than 120 cycles, corresponding
to 40% peak bandwidth utilization. The medium bandwidth range is between 120 and
200 cycles, equating to 40% − 70% peak bandwidth utilization. High bandwidth is
categorized as greater than 200 cycles, corresponding to more than 70% peak bandwidth
utilization.

Similarly, for DDR5, the low bandwidth threshold is set at less than 100 cycles, aligning
with 40% peak bandwidth utilization. The medium bandwidth range spans from 100
to 270 cycles, representing 40% − 70% peak bandwidth utilization. High bandwidth is
defined as exceeding 270 cycles, which corresponds to more than 70% peak bandwidth
utilization.

Tuning Statistics: The optimization process described in Section 3.6 heavily relies on
certain statistics. Detailed discussion is provided in the corresponding section. The
tuning of the Prefetcher primarily involves two parameters: degree and lookahead.

38

3.6. Prefetcher optimization

Adjusting the behavior of the Prefetcher involves the strategic use of adjustDegree and
adjustDistance to store the values of degree and lookahead. At the conclusion of each
epoch, these stored values are applied to Prefetcher in the Queued class, assuming these
Prefetcher are set up to employ these optimization strategies.

Additionally, the parameters distanceVote and avgDistance play a pivotal role in the
voting strategy, which will be elaborated upon in the subsequent section. In brief, these
parameters are employed to aggregate votes for an optimal lookahead value. The best or
average of these votes is then assigned to adjustDistance, which in turn influences
the lookahead parameter during prefetch calculations.

3.6. Prefetcher optimization

As illustrated in Figure 3.3, the blue boxes within the activity diagram signify key
processes where those optimizations are applied. These optimizations involve critical
adjustments in the table entries, as well as in the degree and lookahead values. The
primary objective of these changes is to achieve an optimal balance between timeliness
and aggressiveness in the prefetching process. All configuration parameters for the
Prefetcher, including those related to the base and the optimized strategies, are detailed
in Appendix A.2.

Degree Optimization

Degree optimization in prefetching is governed by a dynamic model that adapts to varying
bandwidth utilization levels, as depicted in Figure 3.6. This model categorizes bandwidth
utilization into three distinct levels: L (Low), M (Medium), and H (High). The degree of
operation is adjusted based on these levels, in conjunction with accuracy statistics.

In scenarios of L or M bandwidth utilization, the system experiences reduced pressure,
enabling the Prefetcher to operate more aggressively. This involves increasing its degree
to prefetch a larger number of memory blocks. Conversely, at H bandwidth utilization, it
is prudent for the Prefetcher to reset its degree, to avoid worsening bandwidth constraints.

However, bandwidth utilization is not the sole determinant in this optimization process.
The accuracy, categorized into L (Low), M (Medium), and H (High) levels, plays a
crucial role. This dual-parameter approach ensures a balanced and efficient prefetching
strategy. For instance, in a situation with High bandwidth, the Prefetcher should relearn
its degree, thereby becoming less aggressive. When bandwidth utilization is at M or L
levels, the decision to increase the degree is further influenced by both the accuracy of
prefetching and the level of bandwidth utilization. It is important to note that the degree

39

3. Methodology and Implementation

of prefetching can only decrease to a minimum degree of 1, as a degree of zero would
imply no prefetching. Conversely, the maximum degree is capped at a value defined by
the benchmark configuration, ensuring that the Prefetcher operates within optimal and
predefined limits.
Table 3.4 presents actions and degree adjustments based on the combined assessment of
bandwidth utilization and Prefetcher accuracy, while adhering to these minimum and
maximum degree constraints.

Accuracy Rate Bandwidth Utilization Action Added Degree
H H set to min reset (1)
H M Increase inc slow (+1)
H L Increase inc fast (+2)
M H set to min reset (1)
M M Increase inc slow (+1)
M L Increase inc fast (+2)
L - set to min reset (1)

Table 3.4.: Degree Adjustment w.r.t. Accuracy Rate and Bandwidth Utilization Level

Lookahead Optimization

This optimization strategy emphasizes the timeliness of prefetches, as detailed in Section
2.2.2). The lookahead parameter plays a critical role in determining the foresight
in requesting memory blocks. An optimal lookahead size is essential for effective
prefetching. In the configuration of this work, the lookahead is constrained to an interval
from zero to 63. This limitation arises because of the product of 64 ∗ 64 = 4096, aligning
with the physical page size.
A too small lookahead can lead to prefetches arriving too late, causing cache misses at
the time of load instructions. On the other hand, an overly large lookahead may result
in prefetched blocks being present in the cache but at risk of eviction before use, again
leading to cache misses. This scenario necessitates re-requesting the same memory block,
thereby reducing performance.
To address the challenge of optimizing prefetch timing, a queuing algorithm for prefetch
table entries has been implemented. This algorithm utilizes data from previous prefetches
when a cache event occurs, enabling dynamic adjustment of the prefetch trigger based on
a flexible lookahead. The methodology of this approach is depicted in Figure 3.7.
The Access stream at the top of Figure 3.7 demonstrates the learning mechanism for
optimizing the prefetch trigger. Upon the occurrence of a cache event, relevant information
is queued. The foundational requirements for this implementation are sourced from the

40

3.6. Prefetcher optimization

Figure 3.7.: Illustrative overview of dual prefetching optimization strategies: The upper
portion of this figure illustrates the learning phase, capturing the trigger data
collection. The lower segment demonstrates the lookahead optimization
methodology, elucidating the adaptive modulation of prefetch triggers in
reaction to cache event patterns, as explicated in Section 3.6. The illustration
also comprehensively portrays the degree optimization strategy at its base,
correlating it with fluctuating bandwidth utilization and accuracy metrics, as
detailed in Section 3.6.

official Gem5 repository, integrated into the Base prefetcher class. A key modification
was the selection of appropriate notification functions for different events. For instance,
in the depicted scenario, the notifyFill(const PacketPtr &pkt) function is invoked,
passing the packet that triggered the event. This pattern of pass-through is consistent
across all three notification functions.

In the second Access stream of Figure 3.7, two critical points are marked in red, labeled
Demand(A) (miss) and Demand(B) (hit). These represent a late prefetch resulting in a
cache miss and a timely prefetch leading to a cache hit, respectively. When a late prefetch
event occurs, it necessitates learning a new trigger for prefetching, thereby requiring the
application of a new lookahead. This adjustment is executed in the notifyLate(const
PacketPtr &pkt) function. Conversely, for a timely prefetch, the notifyTimely(const
PacketPtr &pkt) function is used to increase the confidence in the prefetch trigger. This
is achieved through a voting mechanism, if enabled. If the feature is not enabled, the

41

3. Methodology and Implementation

calculated lookahead value is applied to the next prefetch.

At the bottom of Figure 3.7, the degree optimization strategy, as detailed in Section 3.6,
is effectively illustrated. This section of the diagram visually represents the intricate
process of adjusting the degree based on current system conditions and requirements.
This adaptive approach ensures that the Prefetcher operates at an optimal level, balancing
aggressiveness and timeliness. The sections below delve into the specifics of each
notification function.

notifyFill: This function is activated upon receiving a packet from the cache controller,
which has been forwarded to the Prefetcher due to an event in the cache.

There are two primary reasons for this event. Firstly, the packet could be a hardware
prefetch triggered by a cache miss. Alternatively, it might be due to a cache fill, indicating
that prefetches are arriving at the cache and are being written into it.

Figure 3.8.: Activity diagram of the notifyFill function, illustrating its role in handling
prefetch-related events triggered by the cache controller. The diagram
showcases the process of address verification, queue entry creation, and
updating the fill-done queue based on incoming prefetch requests or cache
fills. This function efficiently manages prefetch-related events within the
cache system.

In the case of hardware prefetching, the function initially checks whether the physical
address within the packet is present in the entry table of the Prefetcher. If the address
is located, the corresponding entry is retrieved. In this scenario, the prefetch address
and the trigger address are both identified as the physical address from the packet.
This characteristic for hardware prefetching, where there is no distinction between the
prefetch trigger and the prefetch address, as prefetching occurs without an external trigger.
Subsequently, a new queue entry for this address is created and added to the fill-done

42

3.6. Prefetcher optimization

queue of the entry.

Conversely, in the event of a cache fill triggered by an incoming prefetch request to the
cache, the function follows a similar procedure to check for the physical address in the
entry table. Upon finding it, the corresponding entry is retrieved. In this case, the prefetch
address coincides with the physical address from the packet, while the trigger address
is derived from the trigger address of the packet. The function then proceeds to create
a queue entry for this address, using both the identified prefetch and trigger addresses.
This ensures that the prefetching queue is updated accurately in response to the demand
request. This process is illustrated in Figure 3.8, which depicts an activity diagram for
the notifyFill function.

notifyLate: This function is invoked when the cache controller signals a late prefetch
event, identified by the notifyLate call with a packet as its argument. The primary
purpose of this function is to handle scenarios where prefetch requests arrive later than
expected, causing a cache miss.

Upon activation, the function first retrieves the physical address from the packet, referred
to as the late prefetch address. It then checks if this address exists in the Prefetcher entry
table. If the address is not found, the function terminates its execution.

If the address is present in the table, the corresponding entry is accessed. The function
then examines the fdQueue (fill done queue) associated with this entry. If the queue is
empty, the function concludes its operation as there are no prefetch requests to process.

However, if the queue already has entries, the function proceeds to iterate through the
queue entries. It assesses each entry to determine if the trigger address aligns with the
same memory page as the late prefetch address. When a match is identified, the function
calculates a lookahead value. This value is derived from the distance between the late
prefetch address and the trigger address, divided by the cache block size. The division by
the cache block size is essential because prefetches operate at the level of cache blocks.
By dividing through the cache block size, the lookahead value is effectively extracted.
Subsequently, the function casts a vote for this lookahead value. The voting is critical in
finding the optimal prefetching trigger for future prefetches, but can be disabled by the
Prefetcher configuration of the architecture. Once a matching entry is found, the function
ceases its iteration and concludes its operation.

This process is illustrated in Figure 3.9, which depicts an activity diagram for the
notifyLate function.

notifyTimely: The notifyTimely function is triggered when the cache controller signals
a timely prefetch event. Managing prefetch requests arriving within an expected time
frame defines the primary role of this function, thereby contributing to efficient prefetches.
Upon invocation, the function first retrieves the physical address associated with the

43

3. Methodology and Implementation

Figure 3.9.: Activity diagram of the notifyLate function, illustrating the handling of late
prefetch requests. The diagram emphasizes the steps of address retrieval, table
entry verification, fdQueue examination, and the calculation of lookahead
values for voting. This process is critical for optimizing prefetch triggers
in scenarios where prefetch requests arrive later than expected, potentially
causing cache misses.

timely prefetch, termed as the timely prefetch address. It then checks for the presence
of this address in the Prefetcher entry table. If the address is not found in the table, the
function terminates immediately. If the address is found, the function proceeds to access
the corresponding entry in the table. It then examines the fdQueue of this entry.

In cases where the fdQueue is not empty, the function iterates through the queue entries.
The goal is to find a queue entry where the prefetch address matches the timely prefetch
address. Upon finding such an entry, the function calculates a lookahead value. This
lookahead is again computed as the absolute difference between the timely prefetch
address and the trigger address of the queue entry, divided by the block size of the cache.
Finally, the lookahead value is then used in the voting mechanisms, adjusting prefetch
distances based on the timing of prefetch requests.
This operation is visually represented in Figure 3.10, which provides an activity diagram
for the notifyTimely function.

44

3.6. Prefetcher optimization

Figure 3.10.: Activity diagram of the notifyTimely function, illustrating the process of
handling timely prefetch requests. The diagram highlights key steps such
as address retrieval, table entry verification, fill-done queue examination,
and the calculation of lookahead values for the voting mechanism. This
mechanism is critical for adjusting prefetch distances based on prefetch
request timing.

Voting Mechanism: In this work, two types of lookahead voting mechanisms are
implemented. These approaches involve setting the adjustDistance metric either to the
most frequently voted value or to the mean of all votes. After the completion
of the epoch, the adjustDistance and adjustDegree parameters are applied to the
prefetch address calculation. The choice of which voting mechanism to employ can be
specified in the benchmark configuration.

45

4. Experimental Analysis and
Evaluation

This chapter focuses on an in-depth analysis and assessment of FS-mode simulations
conducted with the Gem5 simulator. The initial section details the experimental setup,
specifically the hardware and software configurations utilized. This provides a clear
understanding of the simulation environment.

Next, the chapter then introduces the benchmarks used in the simulations. Following
this, the simulation results for these benchmarks are methodically evaluated. This
evaluation includes an analysis of the data, interpretation of findings, and discussion of
their significance in the context of the study.

Lastly, the chapter concludes with an estimation of the hardware resources required
for the practical implementation of the introduced Prefetcher. This section bridges the
theoretical aspects of the simulations with practical considerations, offering insights into
the feasibility of applying these Prefetcher in real-world hardware scenarios.

4.1. Experimental Environment

During the thesis work, a transition in the experimental setup occurred due to the Juawei
system being returned to its owner, leading to the move to the HAICGU cluster. The
table in the Appendix A.3 details the hardware specifications of both systems.

The benchmarks “Simple Triad” and “MINIFE SpMV” (Sparse Matrix-Vector Multipli-
cation) underwent simulation on the Juawei Haswell Node. Those two benchmarks are
used to explore the benefits of different memory types, in this work HBM2 and DDR5,
w.r.t. prefetching and the implemented optimization strategies. Knowing the outcome of
those benchmarks, the next step is to explore NUMA-node aware benchmarks, where
memory is assigned to NUMA-nodes and may be used together in various calculation.
To facilitate these simulations, the ARM ISA was required, prompting the compilation
of the benchmarks “Simple Triad” and “MINIFE SpMV” on the Juawei Hi1616 Node.
Alternatively, for subsequent simulations conducted on the HAICGU cluster, an alterna-

47

4. Experimental Analysis and Evaluation

tive approach was adopted, wherein the benchmarks were compiled within the operating
system image and executed on the standard compute nodes.
The transition to the new architecture introduced specific dependencies and required
adjustments to the existing scripts. These changes were effectively addressed and
subsequently incorporated into the repository [5].
As elucidated in Chapter 3, this work made use of the benchmarking platform provided
by [15]. The architectural description employed in these simulations is comprehensively
detailed in Table A.1. In the following, a comprehensive analysis of the structure of
the benchmarking Python file is given. This file, in conjunction with the architectural
description provided in the YAML file, plays an essential role in generating the full system
simulation.
The benchmarking Python file starts by defining params, where the sizes of each cache
level are specified, along with the attached Prefetcher. It also allows for the definition of
kernel parameters.
In the read params function, the values from params are read and assigned to a parameters
list. These values are generating distinct simulations for various configurations. For
example, specifying threads = [1, 4, 8, 16] results in separate scripts for one, four,
eight, and sixteen threads. Memory regions are also configured here at mem id = [0, 1],
using “0” for HBM2 and “1” for DDR5. This section further enables the customization
of exploration parameters for the Prefetcher, allowing for unique simulations. Parameters
like degree and distance values or feature toggles, such as degree and distance adjustment
explained in Section 3.6, can be chosen.

Subsequently, the parameters undergo validation in the check parameters function to
filter out any incorrect flags or settings.
The update conf function is responsible for updating the configuration of various
parameters, including those defined in the architecture. This step primarily focuses on
adjusting prefetching parameters, initially set as defaults, necessitating this modification.
Additionally, the epoch size is set and remains constant.
In addition, the get command function selects the binary and its associated parameters
for execution. Here, the path to the kernels located within the QEMU image is defined.
Furthermore, numactrl parameters are configured to implement NUMA node-aware
programming.
Finally, the get env dict function configures parameters for OpenMP, including CPU
affinity based on the number of threads.

48

4.2. HPC Benchmarks

$SRCDIR/epi-gem5-pf/exploration/exploration.py \

--fforward -en \

--config numa-2n \

--benchmark numa_pf_bsc_SpMV_test \

--gem5-debug-flags="DBGStats1"

Figure 4.1.: Command used to generate FS-Mode scripts with the optimization –fforward-
en and debugging flags.

Figure 4.1 shows the command used for the generation of the FS-Mode scripts. This
command incorporates the –fforward-en argument, instructing an optimization for the
simulation to operate with an atomic CPU until data from the kernels are initialized.
Subsequently, the simulator switches to the predefined NeoverseV1 model. This optimiza-
tion accelerates the simulation process by disregarding timing considerations until the
CPU switch occurs. A more detailed explanation can be found in the next Section (4.2).
The –config numa-2n argument chooses the numa-2n architectural design (Table A.2).
The –benchmark numa pf bsc SpMV test selects the benchmarking script, as defined
above. In this example, it is the Sparse Matrix-Vector Multiplication benchmark. Lastly,
–gem5-debug-flags=“DBGStats1” sets the debugging prints for the Gem5 simulator.
DBGStats1 is used to generate statistical output on an epoch-by-epoch basis.

4.2. HPC Benchmarks

This chapter describes the benchmarks that are not developed during this work but have
been adapted for compatibility with the Gem5 simulator, as shown in the Figure 4.2
and Figure 4.1 from the previous section. The adaptation involves recompiling the
benchmark code with specific Gem5 instruction sets and integrating it
into a QEMU image for Full System (FS) mode simulation. Figure 4.2 il-
lustrates a pseudocode representation of the modifications required. Initially, the Gem5
instruction set is incorporated by defining USEM5OPSwith the path to the Gem5 instructions.
Concurrently, the --fforward-en feature is activated alongside USEM5OPS by compiling
the benchmark with USEM5OPS ETRACE=1 or USEM5OPS FFINST=1. This configuration en-
ables the simulation to operate with an atomic CPU model, disregarding timing until the
execution of the first m5 exit(0) command. Subsequently, the simulation resets the statis-
tics with m5 reset stats(0,0) after the initialization of benchmark-specific variables
initializeVariables(). The computational phase is signaled by startCalculation().
This phase is pivotal for evaluating the impact of prefetcher. Upon completion of the
benchmark, Gem5 generates statistical files, and the simulation concludes with another

49

4. Experimental Analysis and Evaluation

m5 exit(0) command.

#ifdef USEM5OPS

#include <gem5/m5ops.h>

#endif

initializeVariables();

#ifdef USEM5OPS

#if defined(USEM5OPS_ETRACE) || defined(USEM5OPS_FFINST)

m5_exit(0);

m5_reset_stats(0,0);

#endif

#endif

startCalculation();

#ifdef USEM5OPS

m5_reset_stats(0,0);

#if defined(USEM5OPS_ETRACE) || defined(USEM5OPS_FFINST)

m5_exit(0);

#endif

#endif

Figure 4.2.: Pseudocode illustrating the modifications required to adapt benchmarks for
Gem5 simulation.

4.2.1. Simple Triad

The Simple Triad benchmark is a critical tool for assessing memory bandwidth in HPC
environments. As a component of the comprehensive STREAM suite, this benchmark is
quantifying sustainable memory bandwidth and the associated computational throughput
across four core vector operations: Copy, Scale, Add, and Triad. The Triad operation is
utilizing memory-intensive tasks and computational demands, as depicted in Figure 4.3.

#pragma omp parallel for

for (int i = 0; i < N; i++) {

a[i] = b[i] + scalar * c[i];

}

Figure 4.3.: STREAM Triad Kernel Operation

This kernel succinctly models a scenario wherein each element in the c array is scaled by a
fixed constant (scalar), then added to the corresponding element in the b array, with the
result stored in the array a. This sequence of operations exemplifies a harmonious blend

50

4.2. HPC Benchmarks

of memory read and write activities, establishing the Triad benchmark as an essential
measure for evaluating memory bandwidth within a multifaceted workload context.
Furthermore, the strategic alignment of OpenMP threads with the total number of
available physical cores, along with precise OpenMP thread affinity settings, impacts
the performance. These optimizations ensure the comprehensive utilization of hardware
resources, providing a more accurate representation of the system’s memory bandwidth
capabilities. However, a higher thread count escalates overall memory bandwidth
consumption due to increased traffic on the NoC (Network on Chip) and memory requests,
thereby inducing latency. Given its sequential memory load and write operations,
the benchmark significantly benefits from spatial locality, as no data is reloaded and
operations proceed sequentially. Consequently, a Prefetcher can substantially enhance
performance owing to the predictable access pattern of the benchmark and inherent
spatial locality [34].
Let 𝑁core represent the number of cores, 𝑆𝐿𝐶size denote the size of the SLC per core
in Mebibytes (MiB), 𝐷Bytes signify the byte size of the data type utilized, and 𝐴 the
number of arrays involved. According to the recommendation by [34], the total cache
memory should be multiplied by a factor of four. Consequently, the problem size, 𝑁 , can
be determined using the following formula:

𝑁 =
𝑁𝑐𝑜𝑟𝑒 × 𝑆𝐿𝐶𝑠𝑖𝑧𝑒 × 4

𝐷𝐵𝑦𝑡𝑒𝑠 × 𝐴
(4.1)

Given the configuration where 𝑁𝑐𝑜𝑟𝑒 = 20 cores, 𝑆𝐿𝐶𝑠𝑖𝑧𝑒 = 2 MiB (where 1 MiB
= 1024 ∗ 1024 Bytes), 𝐷𝐵𝑦𝑡𝑒𝑠 = 8 Bytes (since the “double” data types is used), and
𝐴 = 3 (for the three arrays 𝑎, 𝑏 and 𝑐), the problem size 𝑁 is calculated as follows:

𝑁 =
20 × 2 × 1024 × 1024 Bytes × 4

8 Bytes × 3
=

20 × 2 × 1024 × 1024 Bytes × 4
24 Bytes

≈ 13, 981, 867
(4.2)

Thus, the problem size 𝑁 is approximately 13,981,867 elements. In the simulation the
problem size is defined as 15,000,000 elements per array to have a little more stress on
the network devices.

51

4. Experimental Analysis and Evaluation

4.2.2. MINIFE SpMV

MiniFE is designed to emulate the finite element generation, assembly, and solution
processes for an unstructured grid problem, with SpMV being a core component in its
iterative solvers. A sparse matrix, composed of zero values, necessitates an efficient
storage and computational strategy. This efficiency is attained by concentrating on the
non-zero elements, thus reducing memory demands and computational overhead.

The SpMV operation is delineated as 𝑦 = 𝐴𝑥, where 𝐴 represents a sparse matrix, 𝑥
a dense input vector, and 𝑦 the output dense vector. This operation forms the core
computational kernel in the MiniFE benchmark [11].
The implementation of SpMV in MiniFE2 the SELL (Sliced ELLPACK) format is
employed to optimize the sparse matrices, enhancing vectorization and memory access
patterns. The SELL format divides the matrix into slices that align with vector registers,
enabling simultaneous operations on multiple matrix elements and significantly boosting
performance on modern hardware architectures. Each slice contains a fixed number of
rows determined by the chunk size 𝐶. Within each slice, rows are padded as necessary
to ensure that all have the same number of elements, facilitating efficient vectorized
operations. This structure optimizes memory access patterns and reduces the overhead
associated with sparse matrix storage and operations.

#pragma omp parallel for

for(int slice = 0; slice < num_slices; slice++) {

for(int i = Asliceoffsets[slice_start]; i <

Asliceoffsets[slice_end); i++) {

y[i] = 0;

for(int j = row_start[i]; j < row_end[i]; j++) {

y[i] += nnz_values[j] * x[column_indices[j]];

}

}

}

Figure 4.4.: Simplified SpMV Kernel Operation in MiniFE2

This pseudo-code, Figure 4.4, provides a simplified view of the SpMV operation within
the MiniFE2 benchmark. It shows the iteration over slices of the sparse matrix, where
each slice is processed in parallel, utilizing OpenMP for multithreading. The non-zero
elements of the matrix (𝑛𝑛𝑧 𝑣𝑎𝑙𝑢𝑒𝑠) are multiplied by the corresponding elements in
the dense input vector 𝑥, indexed by 𝑐𝑜𝑙𝑢𝑚𝑛 𝑖𝑛𝑑𝑖𝑐𝑒𝑠, and the results are accumulated to
form the output vector 𝑦.

52

4.2. HPC Benchmarks

Given the SELL format, the memory requirement for storing the matrix can be estimated
based on the number of non-zero elements and the slice configuration. Let 𝑁𝑛𝑧 represent
the number of non-zero elements within the matrix, 𝑁𝑟𝑜𝑤𝑠 the total rows in the matrix,
and 𝐶 the selected chunk size for slices. The memory requirement for storing both the
sparse matrix and its corresponding dense vectors can be succinctly represented as:

𝑀total = 𝑁𝑛𝑧 × 8Bytes + (𝑁𝑟𝑜𝑤𝑠 × 𝐶 + 2 × 𝑁𝑟𝑜𝑤𝑠) × 4Bytes (4.3)

where 𝑀total represents the total memory requirement. Here, 𝑁𝑛𝑧 is represented by an
8-Byte floating-point number. The remaining components, including 𝑁𝑟𝑜𝑤𝑠 and 𝐶, are
accounted for as integers, each occupying 4 Bytes.
Utilizing a three-dimensional (3D) box model within MiniFE, characterized by dimensions
𝑛𝑥, 𝑛𝑦, and 𝑛𝑧, it is neccenecessary to understand the assocation of the box dimensions
to the SpMV computational attributes, particularly 𝑁𝑟𝑜𝑤𝑠 and 𝑁𝑛𝑧. The computation of
grid points within the 3D domain, equating to 𝑁𝑟𝑜𝑤𝑠, is given by:

𝑁𝑟𝑜𝑤𝑠 = 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 (4.4)

establishing a direct linkage between grid points and matrix rows, premised on a
one-to-one correspondence.
The computation of non-zero elements (𝑁𝑛𝑧) is a function of the mesh connectivity and
the discretization scheme adopted. For a conventional 3D finite element model employing
a 27-point stencil, 𝑁𝑛𝑧 is estimated as:

𝑁𝑛𝑧 ≈ 𝑁𝑟𝑜𝑤𝑠 × 27 (4.5)

This estimation assumes each interior node connects to 26 adjacent neighbors and
itself, primarily focusing on interior nodes while excluding minor boundary condition
adjustments at the domain edges. The derived value closely approximates that reported
by the workload, thereby facilitating the determination of an appropriate problem size for
the simulation. However, due to the striding pattern, the actual 𝑁𝑛𝑧 may be marginally
lower.
To optimize computational efficiency, the chunk size 𝐶 is dependent on the width of SVE
units. Given two 256 Bit SVE units, 𝐶 is delineated as:

𝐶 =
256 × 2 Bit

𝐷Bit
(4.6)

where 𝐷Bits = 𝐷Bytes × 8, ensuring alignment with hardware capabilities for memory
operations and vectorized computations.

53

4. Experimental Analysis and Evaluation

By analyzing the input parameters of MINIFE and applying equations 4.4, 4.5, and 4.6 to
formula 4.3, the following equation for calculating memory usage is derived:

𝑀total = 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 × 27 × 8 Bytes + (𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 × 512 Bit
64 Bit

+ 2 × 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧) × 4 Bytes

= 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 × 216 Bytes + (𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 × 8 + 2 × 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧) × 4 Bytes
= 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 × 216 Bytes + 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 × 10 × 4 Bytes
= 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 × 216 Bytes + 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 × 40 Bytes
= 256 × 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 Bytes

For a system with 𝑁core = 20 cores and a 𝑆𝐿𝐶size = 2 MiB per core the equation to
ascertain the feasible problem size is presented as:

20 × 2 × 1024 × 1024 Bytes < 256 Bytes × 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧
40 × 1024 × 1024 Bytes < 256 Bytes × 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧
40 × 1024 × 1024 Bytes

256 Bytes
< 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧

163840 < 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧

Our simulation adopts parameters 𝑛𝑥, 𝑛𝑦, and 𝑛𝑧 equal to 63, yielding a total of 250,047
elements. This exceeds the maximum of 163,840 elements determined to fit within the
cache and makes possible to measure the influence of prefetching while saving time on
simulatiuon time. Consequently, the implementation diverges from the conventionally
recommended factor of four, as outlined in [34].

4.2.3. Simple Triad - NUMA Version

The Simple Triad Numa benchmark extends the conventional Simple Triad framework
by incorporating support for NUMA (Non-Uniform Memory Access) nodes. This
integration facilitates targeted memory operations across an array of NUMA nodes.
The mechanism permits data to be transferred between arrays that may be allocated
on disparate or identical NUMA nodes. This adaptability enables a comprehensive
assessment of memory bandwidth and latency across various configurations, such as
transfers from HBM2 to DDR5, DDR5 to HBM2, and within the same memory type.
Contrary to the original Simple Triad benchmark, which was limited to simulating
operations on HBM2 or DDR5, the current iteration explores the assignment of arrays to

54

4.3. Evaluation

different nodes and the capacity of the mesh of the architecture to manage traffic within
the NoC. Additionally, the investigation extends to whether prefetching techniques and
adaptive optimization strategies yield benefits under these conditions. Despite these
enhancements, the benchmark retains the problem size of the original Simple Triad,
owing to its utilization of the identical kernel.

Inspired by the study presented in [30], which focused on the allocation of vectors to
either DRAM or NVDIMMs and their impact on memory bandwidth and latency, this
work delves into the performance outcomes of assigning vectors within the Simple Triad
NUMA benchmark to DDR5 and HBM2.

4.3. Evaluation

This section restructures the evaluation of prefetching techniques for clearer understand-
ing. It begins by establishing the context and goals of the evaluation, focusing on the
comparison between different prefetching configurations and their impact on execution
times across various benchmarks. The evaluation aims to assess how Prefetcher, specifi-
cally the Stream-based Prefetcher, the Agg Prefetcher (Aggressive Prefetcher)
and the TiA Prefetcher (Timely Aware Stride Prefetcher), contribute to performance
improvements by minimizing latency during computation phases. This assessment com-
pares the effectiveness of prefetching techniques against scenarios without prefetching,
as discussed in Section 3.6.

The evaluation methodology is outlined, detailing the primary metric for analysis: the
speedup provided by each Prefetcher, which indicates their effectiveness in reducing
latency. Speedup is calculated by subtracting the execution time of the workload with
prefetching from that without prefetching, and dividing the result by the execution time
without prefetching. To illustrate the evaluation findings, block charts are employed,
showcasing the speedup across different thread counts for each benchmark. These charts
serve to visually represent the performance improvements facilitated by various Prefetcher
configurations. An example of such a chart is Figure 4.5, which features the execution
times with and without prefetching. In these charts, the x-axis denotes the execution
times, while the y-axis lists the Prefetcher configurations. The configuration without
prefetching is depicted in orange, labeled as NoP, while the various prefetching
strategies are shown in blue, offering a clear and direct comparison of how different
prefetching strategies affect the execution time of the same workloads. Additionally, the
speedup values are shown as percentages on the bars, indicating the improvement in
execution time against the scenario with no prefetching. This color coding and percentage
annotation on the bars provide a comprehensive overview of the impact of prefetching on

55

4. Experimental Analysis and Evaluation

benchmark performance, emphasizing the contrast and quantifying the speedup achieved
by prefetching configurations compared to the baseline without prefetching.

Ten configurations of employed Prefetcher are selected for visual representation in
the barchart, highlighting the variations in feature enablement and static settings. For
the Stream-based Prefetcher, the best static configuration and the worst static
configuration are elected for display, indicated as Str(Dg, Dist), where Dg is the degree
and Dist is the distance. Additionally, the top 7 configurations of the TiA and Agg
Prefetcher are also depicted in blue, providing a detailed comparison. The Agg Prefetcher
configurations may be labeled as Agg(adjDg, adjDist, votEn, vot avg), where adjDg
enables degree adjustment, adjDist enables distance adjustment, votEn activates voting,
and vot avg indicates if the average (1) or most voted (0) distance is used. Similarly, for
the TiA Prefetcher, configurations are labeled as TiA(adjDg, votEN, vot avg), sharing
the same feature descriptions as those for the Agg Prefetcher. This detailed labeling and
representation of Prefetcher configurations offer insights into the specific features and
adjustments that contribute to their performance, allowing for an in-depth analysis of
their impact on execution time improvement.

The evaluation omits the PC-based Stride Prefetcher for several reasons. Foremost, the
evaluation already incorporates the static configuration of the Stream-based Prefetcher.
Additionally, all evaluated Prefetcher employ a windowing technique, which is incompat-
ible with the PC-based Stride Prefetcher. Lastly, including this Prefetcher would entail
conducting hundreds of additional simulations for various configurations, similar to those
executed for the Stream-based Prefetcher.

Following this, the study presents an in-depth analysis of significant or unusual configura-
tions through epoch-based plots. These plots provide a granular view of performance
metrics such as accuracy, coverage, prefetch degree, and bandwidth utilization. An
exemplary demonstration of this analysis is provided in Figure 4.6a, which organizes the
key metrics into four quadrants for a clearer understanding. This approach is first
utilized in Section 4.3.1 under the context of the HBM2 Node with 1 Thread, serving as
an initial application to elucidate how these metrics are interconnected. It aims to make
the complex relationships between these performance metrics understandable.

The top left quadrant of Figure 4.6a showcases demand accesses (depicted in
blue), total prefetches (in orange), useful prefetches (in green), and late prefetches
(in red), offering insights into the operational dynamics of the Prefetcher by highlighting
the balance between initiated prefetches and their utility in computation. In the top
right quadrant, focus is placed on bandwidth utilization levels. The bottom
left quadrant provides details on the used prefetch degree, shown in blue, and
the prefetch distance, displayed in orange. Lastly, the bottom right quadrant
illustrates accuracy (in blue) and coverage (in orange). Employing this quadrant-based

56

4.3. Evaluation

analysis allows for a comprehensive examination of Prefetcher configurations, facilitating
a deeper understanding of their effectiveness and behavior.

4.3.1. Simple Triad

HBM2 Node with 1 Thread

As elucidated in Section 4.3, Figure 4.5 displays the simulation results for a single-thread
execution of the Simple Triad benchmark on an HBM2 device. The least effective
static configuration of the Stream-based Prefetcher (Str(degree,distance) with both
degree and distance set to two) demonstrated a speedup of 5.30%. Conversely, the most
effective configuration of the Stream-based Prefetcher, with degree four and distance
32, resulted in a speedup of 27.25%. Additionally, the Figure illustrates performance
variations attributable to the activation or deactivation of various features in the Agg
Prefetcher and TiA Prefetcher.

Notably, the Agg Prefetcher, with the distance adjustment and voting feature enabled, and
selecting the mean of distance votes, closely approached the performance of the optimal
static configuration, showing a speedup of 26.66%. Using the most voted distance over
the mean of votes, for the Agg Prefetcher, yielded a speedup of 25.71%. The marginal
difference between both voting strategies suggests negligible impact, indicating their
near-optimal efficacy. These findings indicate that different workloads may require
distinct degree and distance settings, and bandwidth enhancements could modify these
parameters. Thus, the adaptive nature of distance and degree adjustments, which respond
to varying environmental conditions, offer a significant advantage. The TiA Prefetcher
configurations display similar results followed by the Agg Prefetcher configurations
within the same configuration. Further details on this adaptive behavior are presented in
Figure 4.6.

On the left, Figure 4.6a presents epoch-by-epoch accumulated statistics and metrics for
the Aggressive Prefetcher with both degree and distance optimization activated, applying
the mean of votes to determine distance. Conversely, the right-hand Figure 4.6b displays
the static configuration of the Stream-based Prefetcher, with distance and degree set
to two. Analysis of the upper left quadrants in both Figures reveal a correspondence
between total prefetches (in orange) and useful prefetches (in green). However, a notable
difference exists in the proximity of useful prefetches to demand accesses (in blue) in
Figure 4.6a, indicating a higher efficacy of the Agg Prefetcher in exploiting prefetching
opportunities compared to the static configuration of the Stream-based Prefetcher.

The variation in the degree used, observable in the bottom left quadrants of both Figures
4.6a and 4.6b, accounts for this discrepancy. The Agg Prefetcher, operating under low

57

4. Experimental Analysis and Evaluation

Figure 4.5.: Performance comparison of prefetching strategies for the Simple Triad
benchmark on an HBM2 node with 1 thread. Execution times for the Stream-
based (Str), Aggressive (Agg), and Timely Aware Stride (TiA) Prefetchers
are shown alongside the no-prefetching baseline (NoP). Notable findings
include a 27.25% speedup with the best Stream-based configuration and
a closely matched 26.66% improvement by the Agg Prefetcher with all
advanced features enabled. These results highlight the effectiveness of
adaptive prefetching in reducing computation latency, while being close to
the optimal solution.

bandwidth utilization, (upper right quadrant of Figure 4.6a) and demonstrating high
accuracy in pattern prediction (bottom right quadrant of the same Figure), adjusts its
degree up to 16 as per the guidelines in Table 3.4. This flexibility is not available in the
static configuration, leading to a higher coverage of 95% for the Agg Prefetcher compared
to 50% for the static configuration, as evidenced in the bottom right quadrants of both
Figures. The accuracy levels, however, are similar for both configurations.
The investigation into late prefetches, depicted in the top left quadrants of each Figure in
red, initially reveals a greater occurrence in the Aggressive Prefetcher, rapidly diminishing
in the following epochs as a result of the implemented optimization strategies, in contrast
to the static configuration. This difference is influenced by the greater volume of prefetches
issued by the Agg Prefetcher. Despite this, the gap between useful and late prefetches is
significantly wider in the Agg Prefetcher, indicating that the distance adjustment strategy
effectively minimizes late prefetches, thus enhancing timely prefetches and improving
overall workload performance. The implemented degree adjustment values are visible in
the bottom left quadrant of each Figure, with the Agg Prefetcher setting a larger distance
to optimize prefetches for patterns exhibiting high spatial locality.

58

4.3. Evaluation

(a) (b)

Figure 4.6.: Epoch-based performance metrics analysis for the Agg Prefetcher and the
static configuration of the Stream-based Prefetcher during the Simple Triad
benchmark on an HBM2 node with 1 thread. Left 4.6a: Agg Prefetcher
with adjustable degree, distance, and voting enabled. Right 4.6b: Static
configuration of the Stream-based Prefetcher. These Figures compare the
operational dynamics, bandwidth utilization, prefetching accuracy, and
coverage of dynamic versus static prefetching configurations. The analysis
underscores the adaptive advantage of the Agg Prefetcher in optimizing
prefetching parameters for enhanced benchmark performance, demonstrating
its superior ability to adjust to workload demands and improve execution
times compared to static prefetching approaches.

59

4. Experimental Analysis and Evaluation

HBM2 Node with 4 Threads

Building on the foundational insights garnered from the execution of the Simple Triad
benchmark on an HBM2 node with a single thread, the transition to a multi-threaded
environment introduces a new dimension of complexity and performance dynamics.
The execution of the same benchmark, now leveraging four threads, slightly amplifies
the demand on the HBM2 device, leading to an intricate interplay of memory requests
and data traffic. This escalation not only tests the scalability of prefetching strategies
under heightened workload conditions but also offers a revealing look into the efficacy
of adaptive prefetching mechanisms when confronted with increased memory access
concurrency.

Figure 4.7.: Performance comparison of prefetching strategies for the Simple Triad
benchmark on an HBM2 node with 4 threads. Execution times for the
Stream-based (Str), Aggressive (Agg), and Timely Aware Stride (TiA)
Prefetchers are shown alongside the no-prefetching baseline (NoP). Notable
findings include the Stream-based Prefetcher achieving the highest speedup
of 30.87% with a configuration of degree 4 and distance 32. the Aggressive
Prefetcher, enabled with adjustable degree, distance, and voting features,
applying the mean of votes to the distance, surpasses other configurations with
a speedup of 26.25%, underscoring the effectiveness of distance adjustment
in multi-threaded environments. However, similar configurations of the Agg
Prefetcher, when applying the most voted distance, closely match, with a
speedup of 23.65%.

Figure 4.7 illustrates the performance impact of prefetching configurations in a multi-
threaded environment. The best static configuration of the Stream-based Prefetcher with
a degree of four and distance of 32 significantly improves performance, achieving a
30.87% speedup.

60

4.3. Evaluation

The Agg Prefetcher and TiA Prefetcher exhibit a range of performances based on the
adjustment of their parameters. A particular setup of the Aggressive Prefetcher, enabled
with adjustable degree, distance, and voting features, applying the mean of votes to the
distance, surpasses alternative configurations in performance, resulting in a speedup of
26.25%. Closly followed by the same configuration with applying the most voted distance
with a speedup of 23.65%. The TiA Prefetcher configurations display similar speedup
values around 22.42% to 23.90%. However, as in the single-threaded environment, the
Agg Prefetcher with degree adjustment and distance adjustment, while applying the most
voted distance, is again close to the optimal static configuration.

HBM2 Node with 8 Threads

The execution of the Simple Triad benchmark on an HBM2 node, previously assessed
with single and four-threaded configurations, has now been extended to eight threads.
This expansion significantly heightens the operational demands of the HBM2 memory,
offering an in-depth evaluation of prefetching strategies under escalated workloads and
the effectiveness of adaptive prefetching mechanisms amidst substantial memory access
concurrency.

In an eight-threaded environment, as depicted in Figure 4.8, the performance impact of
distinct prefetching configurations emerges. The Stream-based Prefetcher, when set to
a static configuration with a degree of two and a distance of 32, achieves the highest
speedup at 20.28%. This marks a notable shift from the four-threaded setup, where a
higher degree was advantageous, suggesting an optimal trade-off between prefetching
aggressiveness and the volume of memory requests within the system.

The Agg Prefetcher, with distance and degree adjustments enabled and voting mechanism
activated, employing the most voted distance, achieves the second-highest speedup of
16.77%. Conversely, applying the mean of votes to the distance in the same prefetcher
configuration yields a speedup of 13.61%. This performance, while slightly below
the optimal configuration, still underscores the adaptability of the Agg Prefetcher to
environmental stress. These dynamic adjustments, however, require a span of epochs to
effectively adapt, suggesting that simulations with variable epoch durations could yield
additional insights into prefetching efficiency.

The TiA Prefetcher configurations, especially when utilizing degree and distance adjust-
ments along with the mean of votes for determining the distance, demonstrate limited
performance improvements, achieving a speedup of 5.91%. The adaptive behavior,
implemented in both prefetchers, prompts an investigation into the reasons behind the
significant performance disparity between them.

In the left side of Figure 4.9, the Agg Prefetcher (Figure 4.9a) is depicted with adjustable

61

4. Experimental Analysis and Evaluation

Figure 4.8.: Performance comparison of prefetching strategies for the Simple Triad
benchmark on an HBM2 node with 8 threads. Execution times for the
Stream-based (Str), Aggressive (Agg), and Timely Aware Stride (TiA)
Prefetchers are shown alongside the no-prefetching baseline (NoP). The
Stream-based Prefetcher leads in optimality with a 19.6% speedup in its static
configuration with a degree of two and a distance of 32. The Agg Prefetcher,
with its distance adjustment disabled and voting mechanism engaged, attains
the second-best speedup of 18.68%, while the TiA Prefetcher configurations,
especially when employing degree and distance adjustments with the most
voted distance, exhibit performance on par with the Agg Prefetcher under
analogous conditions. Results suggest that the mechanics of prefetch trigger
learning and queue management could benefit from a re-examination in
conjunction with experimentation across varied epoch lengths, which may
unravel the nuances of these adaptive strategies.

degree, distance, and mean voting. On the right (Figure 4.9b), the TiA Prefetcher is
presented with the same configuration. Both demonstrate similar bandwidth utilization
patterns in the top right quadrant. However, a noticeable drop in bandwidth utilization
for the TiA Prefetcher is observed post epoch 9100 (Figure 4.9b), attributed to two main
reasons. Firstly, the confidence algorithm halts prefetching when the confidence for the
observed pattern is low. Secondly, prefetching ceases if the observed addresses lack a
corresponding PC value. However, a distinction is observed in the coverage, denoted
in orange at the bottom right quadrant of each Figure. The TiA Prefetcher exhibits a
coverage of approximately 85%, as shown in the Figure 4.9a, where the Agg Prefetcher
demonstrates a coverage of around 95% in Figure 4.9b. Analysis of the top left quadrant
in each Figure reveals that the useful prefetches, indicated in green, are closer to the
demand accesses, shown in blue, for the Agg Prefetcher compared to the TiA Prefetcher,
elucidating the observed coverage disparities. Nonetheless, the decline in the count of

62

4.3. Evaluation

(a) (b)

Figure 4.9.: Epoch-based performance metrics analyses for the Agg Prefetcher and TiA
Prefetcher during the Simple Triad benchmark on an HBM2 node with 8
thread. Left 4.9a: Agg Prefetcher with adjustable degree, distance, and mean
voting enabled. Right 4.9b: TiA Prefetcher with same features enabled.
These Figures compare the operational dynamics, bandwidth utilization,
prefetching accuracy, and coverage of dynamic versus static prefetching
configurations. The analysis underscores the impact of adaptive strategies on
prefetching efficiency, revealing the significant performance disparity driven
by the reliance to PC.

late prefetches, depicted in red, is not as pronounced for the TiA Prefetcher as it is for the
Agg Prefetcher, leading to a higher number of late prefetches and consequently, extended
execution time. This explains the lower speedup value for the TiA Prefetcher. The reason
behind this is evident in the bottom left quadrant of each Figure. The graph, highlighting
the learned distance in orange, swiftly stabilizes at a distance of 16, indicating that
the TiA Prefetcher exclusively relies on the PC for trigger learning. In contrast, the
Agg Prefetcher considers all addresses for trigger learning and more adeptly adjusts its
distance, leading to prefetches that are more timely. Another observed distinction is the
slower degree adjustment for the Agg Prefetcher compared to the TiA Prefetcher, despite
both employing the same algorithm for this purpose, pointing to potential areas for further
exploration. It is suggested that the mechanics of prefetch trigger learning and queue
management could benefit from a re-examination in conjunction with experimentation
across varied epoch lengths, which may unravel the nuances of these adaptive strategies.

63

4. Experimental Analysis and Evaluation

DDR5 Node with 1 Thread

Transitioning from HBM2 to DDR5 memory introduces a trade-off between increased
capacity and reduced memory bandwidth. This trade-off is evident in the performance
results illustrated in Figure 4.10 for the Simple Triad benchmark.

Figure 4.10.: Performance comparison of prefetching strategies for the Simple Triad
benchmark on a DDR5 node with 1 thread. Execution times for the
Stream- based (Str), Aggressive (Agg), and Timely Aware Stride (TiA)
Prefetchers are shown alongside the no-prefetching baseline (NoP). A
performance degradation is observed when transitioning from HBM2
to DDR5 memory with a single thread in the Simple Triad benchmark.
This Figure demonstrates the impact of different Stream-based Prefetcher
configurations on DDR5 memory performance, highlighting a decrease of
−2.62% with the least effective static configuration and an improvement
of 5.55% with the most efficient configuration. The results underscore
the importance of optimal Prefetcher settings in mitigating the inherent
trade-offs between capacity and bandwidth in DDR5 memory systems.

In comparison to the single-threaded HBM2 simulation, the DDR5 memory shows a
noticeable performance degradation. Employing the least effective static configuration of
the Stream-based Prefetcher, with both degree and distance parameters set to 32, results in
a performance decrease of −2.62%. This decrease is attributed to the excessive prefetch
degree, which generates more memory requests and consequently increases latency,
leading to delayed data delivery. Conversely, the most efficient static configuration for the
Stream-based Prefetcher, maintaining the distance at 32 but reducing the degree, exhibits
a performance improvement of 5.55%. This suggests that a balanced degree is crucial for
optimal prefetching performance.

The adaptive configurations of both the TiA and Agg Prefetchers demonstrate comparable

64

4.3. Evaluation

performance enhancements, with speedups ranging from 1.76% to 3.28%. These
configurations, despite minor differences in performance, effectively illustrate that
tunable parameters could yield substantial performance benefits. The results also indicate
that enabling all features and applying the most commonly selected distance parameter
consistently yield favorable outcomes.

DDR5 Node with 4 Threads

Elevating the thread count to four exerts additional stress on the DDR5 memory system,
as delineated in Figure 4.11.

Both the optimal and suboptimal static configurations of the Stream-based Prefetcher
exhibit notable performance degradations. The least effective setup, with a high prefetch
degree as previously discussed, incurs a substantial performance decrease of −33.23%.
Conversely, other configurations lead to marginal performance reductions around −2.39%
or slight improvements of up to 0.28%, essentially aligning with the performance observed
with no prefetching. This phenomenon suggests an in-depth examination depicted in
Figure 4.12.

Figure 4.12a highlights the TiA Prefetcher as the most effective performing configuration,
achieving a speedup of 0.28% with all optimization strategies activated. Conversely,
Figure 4.12b illustrates the least effective static configuration for the Stream-based
Prefetcher, resulting in a performance reduction of −33.23%. Although not depicted
in Figure 4.12c, due to the representation constraints of only 10 configurations, the
performance of the Agg Prefetcher with the same configuration as the best performing
TiA Prefetcher is also examined. This analysis is conducted to elucidate the factors
contributing to the superior performance of the TiA configuration in this experiment.

The analysis of the depicted Figures reveal a high bandwidth utilization, visible at the
top right quadrants, indicating substantial stress on the memory device. A comparative
examination of the adjusting Prefetcher, TiA and Agg, is presented in Figures 4.12a and
4.12c, respectively. In the bottom right quadrant of each Figure, it is observed that the
accuracy of both Prefetcher, represented in blue, achieves 100%. Because of the high
bandwidth utilization, the intial logic of the optimization strategy does not increase the
prefetch degree. However, a significant distinction is observed in the coverage, denoted
in orange. The TiA Prefetcher exhibits a coverage of approximately 15%, as shown in the
top left of Figure 4.12a, whereas the Agg Prefetcher demonstrates a substantially higher
coverage of around 85% to 90% in Figure 4.12c.

This discrepancy suggests that the TiA Prefetcher does not encompass all potential
prefetch opportunities, a conclusion further supported by the observation of low late
prefetches in the top right quadrant of Figure 4.12a.

65

4. Experimental Analysis and Evaluation

Figure 4.11.: Performance comparison of prefetching strategies for the Simple Triad
benchmark on a DDR5 node with 4 threads. Execution times for the Stream-
based (Str), Aggressive (Agg), and Timely Aware Stride (TiA) Prefetchers
are shown alongside the no-prefetching baseline (NoP). Increasing the
thread count to four for DDR5 memory impacts the performance. The
Figure illustrates significant performance degradation up to −33.23% with
the least effective setup and minor performance variations with other
configurations. This analysis highlights the critical role of prefetching
strategies in managing additional stress on memory systems induced by
higher thread counts.

This phenomenon may be attributable to two factors. Firstly, if the total prefetches
(in orange) and useful prefetches (in green) were to align with demand accesses (in
blue), it would imply an ideal prefetch scenario with perfect prediction and timely
data delivery, thereby indicating high coverage, which is contradicted by the observed
data. Consequently, the more plausible explanation is the alignment of total and useful
prefetches with the late prefetches (in red), suggesting that the Prefetcher issues a limited
number of prefetches. This approach, whereby fewer prefetches are issued, even at
the risk of them being late, provides performance benefits in environments utilizing
DDR5 Memory with high bandwidth utilization. With this understanding, the focus
shifts towards comparing the behavior of Agg Prefetcher with the least effective static
configurations.

Both the Agg Prefetcher, as shown in Figure 4.12c, and the Stream-based Prefetcher with
a static configuration, as depicted in Figure 4.12b, exhibit similar accuracy. However,
the coverage is costantly arround 90% for the static configuration for the Stream-based
Prefetcher, visable in the bottom right quadrant of their respective Figures.

As illustrated in Figures 4.12c and 4.12b, both the Agg Prefetcher and the Stream-based

66

4.3. Evaluation

Prefetcher with a static configuration demonstrate comparable accuracy levels. Notably,
the Stream-based Prefetcher maintains a consistent coverage of approximately 90%, as
observed in the bottom right quadrant of the corresponding Figures. The Agg Prefetcher
is observed to have a lower degree of prefetching, a point previously elucidated, and
displays fluctuating prefetch distances before stabilizing at a value of 34. This suggests an
attempt by the Prefetcher to fetch data as close to the page boundary as possible, aiming
for timely prefetches akin to the fixed configuration of 32 observed in the Stream-based
Prefetcher. Analysis of the top right quadrants for both Prefetcher reveals that total and
useful prefetches closely align with demand accesses. Nonetheless, the data arrives late
for more than half of the prefetches, as indicated by the late prefetches marked in red,
culminating in a decline in performance for benchmarks with high spatial locality, as
Simple Triad is.
The findings necessitate a deeper examination of the strategy for adjusting distances in
situations characterized by high bandwidth usage. Yet, this task may present significant
challenges, given that employing the most effective static strategy has not resulted in any
performance improvements.

67

4. Experimental Analysis and Evaluation

(a) (b)

(c)

Figure 4.12.: Comparative epoch-based analysis of prefetching in a 4-thread DDR5
setting underscores the TiA Prefetcher’s efficiency with limited prefetches,
positioned at the top left 4.12a. In contrast, the Agg and Stream-based
Prefetchers, shown at the bottom 4.12c and top right 4.12b respectively,
demonstrate similar accuracies yet differ in strategy. A lower prefetch degree
and greater distance for the Agg Prefetcher aim to approach page boundaries
closely, enhancing timeliness but not necessarily efficiency. Both strategies
exhibit alignment between total, useful, and demand accesses but suffer from
late deliveries in high spatial locality benchmarks, impacting performance.

68

4.3. Evaluation

DDR5 Node with 8 Threads

The transition to an 8-thread configuration in the DDR5 memory system necessitates
a reevaluation of prefetching strategies previously examined under a 4-thread scenario.
Initial observations suggested minimal to no benefits from prefetching with four threads,
as shown in Figure 4.11. Advancing to eight threads, one might anticipate an intensified
challenge for prefetching effectiveness due to increased demands on the memory system.

Figure 4.13.: Performance comparison of prefetching strategies for the Simple Triad
benchmark on a DDR5 node with 8 threads. Execution times for the
Stream- based (Str), Aggressive (Agg), and Timely Aware Stride (TiA)
Prefetchers are shown alongside the no-prefetching baseline (NoP). The
evaluation of prefetching strategies in an 8-thread DDR5 memory system
configuration, indicating minimal performance benefits across different
prefetcher configurations. The TiA Prefetcher, maintaining its configuration
from the 4-thread scenario, shows a marginal speedup, underscoring the
challenges of prefetching effectiveness with increased memory system
demands. This Figure reflects the diminishing returns of prefetching at
higher thread counts.

Figure 4.13 reveals that the TiA Prefetcher, maintaining the same configuration as
in the 4-thread case, emerges as the most effective self adjusting Prefetcher, with a
speedup of 0.61%. The speedup of 0.61% achieved by the TiA Prefetcher, is negligible
due to delivering basically no performance gaing for the benchmark. Consequently,
configurations yielding speedup variations within the range of −2.0% to 2.0% are deemed
negligible, echoing the findings at high bandwidth utilization for DDR memory, the
benefits of prefetching diminish. Furthermore, the performance degradation observed
with the least effective static configuration of the Stream-based Prefetcher, experiencing a
−31.66% decline, mirrors the trend noted in the 4-thread scenario. The best performing

69

4. Experimental Analysis and Evaluation

static configuration has a speedup of 1.09% and is negligible, underscoring that the
adaptive configurations that demonstrate a notable capacity for self-optimization by
modulating the prefetch degree in response to the changing system conditions.

Conclusion

Analysis spanning single, four, and eight-threaded executions of the Simple Triad bench-
mark on an HBM2 node have yielded clear insights into the performance of prefetching
strategies. Throughout the simulations, the most voted distance and mean distance showed
similar performance. At all levels of threading, adaptive prefetching strategies proved their
efficacy, closely rivaling the top results achieved by static configurations. The distinction
between static and adaptive approaches became apparent. While static configurations
vary within benchmarks, adaptive configurations maintained performance independence
from specific workloads. Notably, under conditions without memory contention, both
the TiA and Agg Prefetcher showed comparable performance enhancements. However,
the performance of the Agg Prefetcher was distinctly better. This divergence suggests
underlying differences in how each Prefetcher utilizes adaptive behavior, warranting
further exploration of prefetch trigger mechanisms and queue management, especially in
light of varying epoch lengths.

The transition from HBM2 to DDR5 in the context of the Simple Triad benchmark shows
a performance bottleneck, associated to the inferior bandwidth of DDR5, notwithstanding
its superior capacity. Comparative analysis across single-threaded, four-threaded, and
eight-threaded simulations illustrate that the inferior bandwidth of DDR5 notably
decrease performance at high bandwidth utilization, thereby underscoring the significance
of memory type for memory-intensive operations. While HBM2 facilitates greater
performance in such benchmarks, due to higher bandwidth, the shift to DDR5, despite
its advantages in capacity, introduces constraints that negatively impact performance.
Nonetheless, even marginal performance improvements, peaking at 0.61%, are achievable.
In particular, static configurations such as the Stream-based Prefetcher, with its distance
and degree parameters set at a constant 32, exhibit a significant performance decline,
quantified at −31.66%, as illustrated in Figure 4.13. This observation underscores the
effectiveness of self-adjustment strategies, which are capable of adapting to diverse
memory environments and securing benefits, even under adverse conditions.

Drawing insights from the analysis, it is clear that architectures benefiting from the
integration of heterogeneous memory devices, each distinct in their capabilities, greatly
enhance their performance through NUMA node-aware programming. By choosing the
right memory device, particularly HBM2 in the given architecture, adaptive and balanced
prefetching techniques significantly improve workload efficiency. However, selecting

70

4.3. Evaluation

an unsuitable memory device could negate the benefits of prefetching and even lead to
decreased performance due to memory contention.

4.3.2. MINIFE SpMV

HBM2 Node with 1 Thread

The superior performance within a single-threaded simulation on HBM2 memory is
analyzed in Figure 4.14, where the Stream-based Prefetcher, statically configured with
both prefetch degree and distance set to 32, achieves the highest speedup of 45.42%.
Closely following this, the Agg Prefetcher, optimized with all available strategies and the
most favored distance setting, attains a speedup of 44.73%. A slightly lower speedup of
44.70% is observed when employing a mean voting strategy for the same configuration
of the Agg Prefetcher, which is nearly equivalent to the highest performance level.
Moreover, various configurations of the Agg Prefetcher demonstrate significant speedups
starting from 36.06%, indicating the effectiveness of each implemented balancing strategy.
The maximum speedup is realized when adjustments to degree and distance are made
simultaneously.

A notable performance gap of 7.69% between the optimal configurations of the TiA
Prefetcher and the Agg Prefetcher underscores the advantage of stream-based pattern
detection over PC-based detection in scenarios with a minor proportion of temporal
locality. Furthermore, the least speedup of 17.21% is recorded with the static configuration
of the Stream-based Prefetcher at a degree and distance of two, reaffirming the benefit of
adaptive balancing.

This analysis aims to elucidate the performance gap observed between the TiA Prefetcher
and the Agg Prefetcher. Figure 4.15 serves as comparison, presenting side-by-side
epoch-based analysis plots of the Agg Prefetcher (left) and the TiA Prefetcher (right),
under identical configurations. The analysis particularly focuses on the approach of
deactivating the degree adjustment feature whilst activating the distance adjustment
feature, with a preference for the most frequently selected distance. This specific
configuration adjustment, notable in the speedup of the TiA Prefetcher, is visible in Figure
4.14. Given that the degree adjustment is deactivated, it is feasible to omit consideration
of the upper right quadrant in each Figure presented in 4.15a and 4.15b. Both prefetcher,
Agg and TiA, exhibit a commendable alignment of useful prefetches (indicated in green)
with the total number of issued prefetches (shown in orange) in the top left quadrant of
each Figure. This alignment is similarly reflected in the coverage metric (also in orange)
within the bottom right quadrant of each Figure. A closer inspection reveals that the
Agg Prefetcher (4.15a) secures a marginally superior coverage rate compared to the TiA

71

4. Experimental Analysis and Evaluation

Figure 4.14.: Performance comparison of prefetching strategies for the SpMV benchmark
on an HBM2 node with 1 thread. Execution times for the Stream-based
(Str), Aggressive (Agg), and Timely Aware Stride (TiA) Prefetchers are
shown alongside the no-prefetching baseline (NoP). The Stream-based
Prefetcher, with both prefetch degree and distance set to 32, achieves the
highest speedup of 45.42%, closely followed by the Agg Prefetcher with
a speedup of 44.73%. Employing a mean voting strategy for the Agg
Prefetcher results in a similar speedup of 44.70%. These results highlight
the effectiveness of various configurations for the Agg Prefetcher and
the advantage of Stream-based pattern detection, particularly in scenarios
with limited temporal locality. The least speedup of 17.21% with a static
configuration underscores the importance of adaptive strategy adjustments.

Prefetcher (4.15b). This differentiation is also noticeable in the upper left quadrant of
each Figure, where the Agg Prefetcher records a higher number of useful prefetches, thus
yielding closer proximity to demand accesses than the TiA Prefetcher. The basis for this
variance is straightforward. The TiA Prefetcher dedicates additional effort to building
confidence. Given the presence of temporal locality, this results in the TiA Prefetcher
spending more time in this phase. This is also evident in the downward spikes observed in
the bottom-right and top-left quadrants of Figure 4.14. In contrast, the update mechanism
employed by the Agg Prefetcher is more adeptly suited to these patterns, thereby reducing
its processing time. Regarding the applied distance (in orange) at the bottom left quadrant
of each Figure, both Prefetcher exhibit similar behavior. The distance managed by the
TiA Prefetcher initially increases to 17 before stabilizing at a consistent value of 18. This
fluctuation is attributed to the history table possessing less data due to the additional
time allocated for confidence building. Conversely, the Agg Prefetcher undergoes more
frequent adjustments due to the trigger learning queue discarding the PC, resulting in a
higher frequency of updates in terms of votes. This mechanism explains the observed

72

4.3. Evaluation

variance in behavior until the distance remains constant at 20.

(a) (b)

Figure 4.15.: Epoch-based analysis comparing the Agg and TiA Prefetchers under identi-
cal configurations with the degree adjustment deactivated and the distance
adjustment activated. The analysis showcases the side-by-side performance
of the Agg Prefetcher (left) and the TiA Prefetcher (right), emphasizing their
approaches to prefetching in a single-threaded HBM2 memory simulation.
Notably, the Agg Prefetcher demonstrates a marginally superior coverage
rate and a higher number of useful prefetches, reflecting its efficiency in
adapting to demand accesses with a more variable distance setting. In
contrast, the TiA Prefetcher exhibits a fixed distance, attributed to the
additional time spent on building confidence due to temporal locality. This
comparison reveals strategic differences in prefetching behavior and their
impact on performance, underscoring the importance of optimal distance
settings in achieving higher speedups.

73

4. Experimental Analysis and Evaluation

HBM2 Node with 4 Threads

Increasing the number of threads to four does not exert sufficient pressure on the HBM2
device to significantly alter the performance observed in single-threaded simulations, as
observable in Figure 4.16. Despite this, an increase in speedup is noted, attributable
to the utilization of additional cores and, consequently, more Prefetcher. The Agg
Prefetcher, when optimized with all available strategies and employing the most favored
distance, achieves a significant speedup of 59.84%. This performance is close to the
static Stream-based Prefetcher, configured with a prefetch degree and distance of 32,
which leads to a speedup of 61.64%.

Figure 4.16.: Performance comparison of prefetching strategies for the SpMV benchmark
on an HBM2 node with 4 threads. Execution times for the Stream-based
(Str), Aggressive (Agg), and Timely Aware Stride (TiA) Prefetchers are
shown alongside the no-prefetching baseline (NoP). The Agg Prefetcher,
optimized with all available strategies and employing the most favored
distance, achieves a notable speedup of 59.84%, closely rivaling the Str
Prefetcher configured with a degree and distance of 32, which leads to a
speedup of 61.64%. This marginal difference of only 1.80% between the
two demonstrates the effectiveness of optimization strategies.

74

4.3. Evaluation

The marginal difference of only 1.80% between these configurations highlights the
efficacy of the optimization strategies employed. Furthermore, the TiA Prefetcher, under
the same configuration as Agg Prefetcher with degree optimization disabled and distance
voting enabled, exhibits a reduced speedup of approximately 9.62%. This discrepancy,
as elucidated in the single-threaded evaluation for HBM2, underscores the performance
differences attributable to specific prefetcher configurations. Notably, all adjustable
Prefetcher outperform the least effective static configuration, with the performance of the
Agg Prefetcher nearly matching that of the best static configuration.

HBM2 Node with 8 Threads

Doubling the thread count to eight on the HBM2 device results in a shift in performance
dynamics, yet it does not impose a significantly higher computational load as might
be expected. This observation is detailed in the forthcoming Figure 4.17, where the
performance metrics of various prefetching strategies under an eight-thread configuration
are analyzed.

Figure 4.17.: Performance comparison of prefetching strategies for the SpMV benchmark
on an HBM2 node with 8 threads. Execution times for the Stream-based
(Str), Aggressive (Agg), and Timely Aware Stride (TiA) Prefetchers are
shown alongside the no-prefetching baseline (NoP). The Stream-based
Prefetcher, with a configuration of degree and distance set to 32, achieves
the highest speedup of 61.87%. In contrast, with a configuration of degree
and distance set to 2 yields only a 12.83% speedup, indicating the critical role
of Prefetcher configuration. The Agg Prefetcher, fully optimized, secures
the second-best performance with a 56.70% speedup, demonstrating the
efficacy of optimization strategies.

The static Stream-based Prefetcher, with both degree and distance set to 32, retains its

75

4. Experimental Analysis and Evaluation

position as the top performer, delivering a remarkable speedup of 61.87%. Conversely,
the same Prefetcher, when configured with a degree and distance of 2, markedly
underperforms, achieving only a 12.83% speedup. This performance is more than two
times slower compared to a four-thread scenario, subtly indicating an elevated pressure
on the HBM2 device. However, this pressure is still insufficient to dramatically alter the
performance. The contrasting results between the best and worst static configurations
underscore the critical importance of configuration adaptability in both static and
dynamic contexts. The Agg Prefetcher, fully optimized with all available strategies and
employing the most voted distance, secures the second-best performance with a 56.70%
speedup. This finding once again highlights the efficacy of the optimization strategies,
demonstrating the capability of the Agg Prefetcher to nearly match the performance
of the best static configuration through epoch based adjustments. The TiA Prefetcher
continues to exhibit commendable performance, albeit slightly trailing behind the Agg
Prefetcher. This trend, consistent with observations from single-threaded simulations on
HBM2 memory, points to limitations of the TiA Prefetcher.

DDR5 Node with 1 Thread

Switching to DDR5 from HBM for a single-threaded simulation, as depicted in Figure
4.18, yields results that are approximately equivalent to those obtained with the HBM2
device. This similarity in outcomes suggests that the SpMV benchmark requires less
memory bandwidth than the Simple Triad benchmark, where the transition from HBM2
to DDR5 exhibited a significant decrease in performance, as evidenced by the reduction
in speedup values. Specifically, the least effective configuration of the Stream-based
Prefetcher, with both distance and degree set to two, results in a speedup of 12.84%. In
contrast, the optimal static configuration, with prefetch degree and distance set to 32,
achieves a higher speedup of 41.38%. This is closely followed by the Agg Prefetcher,
with all optimization strategies enabled and employing the most favored distance, leading
to a speedup of 40.16%. These findings underscore again the memory device awareness
and effectiveness of the optimization strategies under conditions of low memory pressure.
Previously, only HBM2 was observed to benefit from prefetching and optimization
strategies. However, this data indicates that DDR5 can also gain from these strategies,
depending on the specific workload.

76

4.3. Evaluation

Figure 4.18.: Performance comparison of prefetching strategies for the SpMV benchmark
on a DDR5 node with 1 thread. Execution times for the Stream-based (Str),
Aggressive (Agg), and Timely Aware Stride (TiA) Prefetchers are shown
alongside the no-prefetching baseline (NoP). Results show the performance
of DDR5 is comparable to HBM2. Notably, the least effective Stream-based
Prefetcher configuration (distance and degree set to two) yields a 12.84%
speedup, while the optimal static configuration (prefetch degree and distance
set to 32) achieves a 41.38% speedup, closely followed by the Agg Prefetcher
at 40.16%. These results underline the effectiveness of optimization
strategies under conditions of low memory pressure, highlighting that
DDR5, similar to HBM2, benefits from prefetching and optimization
strategies depending on the workload.

77

4. Experimental Analysis and Evaluation

DDR5 Node with 4 Threads

Increasing the number of threads to four on DDR5 memory naturally leads to an expected
rise in demand requests, placing more stress on the DDR5 device. Despite this increased
load, results depicted in Figure 4.19 demonstrate that a maximum speedup of 25.77% is
achievable.

Figure 4.19.: Performance comparison of prefetching strategies for the SpMV benchmark
on a DDR5 node with 4 threads. Execution times for the Stream-based (Str),
Aggressive (Agg), and Timely Aware Stride (TiA) Prefetchers are shown
alongside the no-prefetching baseline (NoP). Raising the thread count to
four on DDR5 systems amplifies demand requests, placing greater stress on
the memory system. However, this adjustment yields a significant speedup,
achieving an increase of up to 25.77%. This performance boost is provided
by the static configuring the Stream-based Prefetcher with a degree of four
and a distance of 16. The lowest observed speedup is 8.91%, with degree
and distance set to two, highlighting the importance of optimal prefetch
settings. The Aggressive (Agg) Prefetcher closely follows with a speedup
of 21.67%, underlining the effectiveness of tailored optimization strategies
for DDR5 under increased workloads.

This is in contrast to the Simple Triad benchmark, where performance gains were not
observed and even lead to performance drawbacks. The highest speedup is attained
with the Stream-based Prefetcher, configured with a degree of four and a distance of 16.
In comparison, the lowest speedup of 8.91% is achieved with the same Prefetcher, but
with both degree and distance set to two. This indicates that for the SpMV benchmark,
increasing the prefetch degree to utilize available bandwidth and extending the prefetch
distance to minimize late prefetches effectively optimizes performance. Furthermore, the
Agg Prefetcher, with all optimization strategies enabled and employing the most favored

78

4.3. Evaluation

distance, achieves a closely matched speedup of 21.67%. Similar levels of performance
improvement are noted with other configurations of the TiA or Agg Prefetcher, closely
aligning with the setup of the Agg Prefetcher when all optimization strategies are enabled
and the optimal distance is utilized. This consistency underscores the benefits of fully
enabling optimization strategies, yielding the effectiveness of memory device-aware
optimizations.

DDR5 Node with 8 Threads

Figure 4.20.: Performance comparison of prefetching strategies for the SpMV benchmark
on a DDR5 node with 8 threads. Execution times for the Stream-based
(Str), Aggressive (Agg), and Timely Aware Stride (TiA) Prefetchers are
shown alongside the no-prefetching baseline (NoP). Increasing the thread
count to eight on DDR5 systems results in a performance degradation
of up to −15.39%, underscoring the challenges of handling increased
demand accesses and the consequential memory latencies. This condition
is exacerbated when the Stream-based Prefetcher is configured with a
high degree and distance of 32, leading to further memory contention.
Conversely, optimal configurations, such as a degree and distance of two for
the Stream-based Prefetcher, demonstrate a speedup of 10.35%, suggesting
the critical role of prefetcher parameter tuning in high contention scenarios.
The performance of the Agg and TiA Prefetchers, under various settings,
illustrates the direct impact of prefetch strategies on controlling memory
bandwidth and latency, with the adaptability of the TiA Prefetcher pointing
towards the need for further refinement in prefetching mechanisms.

79

4. Experimental Analysis and Evaluation

Scaling the number of threads to eight introduces the first significant performance
degradation of −15.39% for DDR5 memory during the SpMV benchmark, as illustrated
in Figure 4.20. This reduction in performance is primarily due to the increased number
of demand accesses on the DDR5 memory, which leads to longer latencies until data
becomes available. This issue becomes more pronounced when the Stream-based
Prefetcher is configured with both degree and distance set to 32, exacerbating memory
contention and leading to the observed performance drop. This situation highlights the
importance of fine-tuning the prefetch degree in high bandwidth utilization scenarios.
The best performance is recorded with the Stream-based Prefetcher configured to a degree
and distance of two, achieving a speedup of 10.35%. Similar observations were made
in the Simple Triad benchmark, indicating that minimizing the degree and distance in
high memory contention scenarios lead to optimal performance. For example, the Agg
Prefetcher with all optimization strategies disabled, effectively operating like a Stream-
based Prefetcher with degree set to two and distance set to zero, secures the third-best
performance with a speedup of 7.60%. However, activating this configuration of the Agg
Prefetcher with distance optimization, while employing the most voted distance, yields an
improvement of 1.15% and results in a speedup of 8.75%. This outcome demonstrates
that distance adjustment remains beneficial in this scenario, utilizing 8 threads to achieve
timely data retrieval through prefetching.
Furtheremore, it is observed that more configurations of the TiA Prefetcher are presented
in the Figure 4.20 compared to those of the Agg Prefetcher, diverging from simulations
involving both HBM2 and DDR5 for the SpMV benchmark, where Agg Prefetcher
configurations typically lead the top performance metrics. This variation is due to the
TiA Prefetcher issuing fewer prefetches as a result of its confidence-building process,
which is advantageous in situations of high memory utilization. Nevertheless, the aim is
to improve the adaptability of Prefetcher to allow for as many prefetches as possible to
enhance performance gains, suggesting the need for refinements in the adaptive behavior
of prefetching mechanisms, particularly under conditions of high bandwidth utilization.

Conclusion

Evaluating MINIFE SpMV across HBM2 and DDR5 under varied thread scenarios shows
that MINIFE SpMV utilizes fewer demand requests to the memory device than Simple
Triad, benefiting from prefetching. The move from single to multi-threaded executions
on HBM2 demonstrates the ability of the Agg and TiA Prefetcher to effectively utilize
high-bandwidth memory with optimization strategies, achieving significant speedups.
Results indicate the Agg Prefetcher, optimized with all strategies, consistently approaches
the performance of the best static configurations across threading levels and memory
types. Moreover, the transition to DDR5, despite its lower bandwidth compared to

80

4.3. Evaluation

HBM2, highlights the importance of device-aware optimization strategies. MINIFE
SpMV results on DDR5 show that strategic prefetching and optimization can mitigate
performance declines, achieving comparable results to HBM2 in certain scenarios.

The shift to eight threads on DDR5 reveals challenges due to increased demand accesses
and subsequent memory contention, highlighting the need for improvements in adaptable
prefetching strategies in high bandwidth utilization situations. This context underscores
the importance of finely tuned degree and distance adjustments. The best performance is
recorded with the Stream-based Prefetcher configured to a degree and distance of two.
Similar observations were noted in the Simple Triad benchmark, indicating that mini-
mizing both degree and distance in scenarios characterized by high memory contention
indeed results in better performance. However, further refinement of optimization strate-
gies for scenarios affected by memory contention would yield significant performance
enhancements.

4.3.3. Simple Triad - NUMA Version

In the analysis presented in Section 4.3.1, the performance of the Simple Triad kernel is
examined under two NUMA nodes: DDR5 and HBM2, alongside the impact of Prefetcher
settings when memory is allocated across those NUMA nodes. This investigation probes
the performance impact of distributing vectors 𝑎, 𝑏, and 𝑐, denoted as (𝑎, 𝑏, 𝑐) where
0 indicates the allocation on the HBM2 node, 1 on the DDR5 node, and 𝑥 either 0 or
1, across different NUMA nodes. It is essential to highlight that the core affinity is
determined based on vector 𝑎, which serves as the storage location for the computational
result. Furthermore, each vector necessitates a load operation. Additionaly, vector 𝑎
necessitates an additional write-back instruction due to its role in preserving the result.
The findings, delineated in table 4.1, reveal significant gaps in execution times and
speedup percentages. These results offer comprehensive insights into the influence of
memory type allocations on the kernel performance.

Focusing on the DDR5 (NoP) column within the table 4.1 provides a detailed insight
into the performance dynamics under different vector allocation configurations in a
NUMA setting. The performance changes, denoted as percentages, reflect the impact
of using the DDR5 node without prefetching (NoP) compared to a baseline where all
vectors are allocated at the HBM2 node. The data reveals notable performance drawbacks
when one or more vectors are assigned to DDR5 without prefetching. Specifically,
on the allocation (0, 0, 1) or (0, 1, 0) results in performance drawback of −8.52% and
−8.38%. Such reductions occur because vectors allocated on HBM2 must await data
from DDR5, elucidating the observable performance drawback. This pattern persists on
the allocation (0, 1, 1), which amplifies the demand requests on the DDR5 device and

81

4. Experimental Analysis and Evaluation

Vector a Vector b Vector c DDR5 (NoP) Agg (All) TiA (All) Agg is (DDR5) TiA (DDR5) Agg (HBM2) TiA (HBM2)
0 0 0 0.00% 19.73% 19.40% 0.06% -0.02% 19.79% 19.50%
0 0 1 -8.52% 7.45% 4.21% -0.35% -0.11% 9.58% 5.69%
0 1 0 -8.38% 4.21% 2.01% 1.09% 1.55% 6.66% 1.95%
0 1 1 -16.22% 0.14% -4.36% -1.83% -4.31% 2.72% -0.36%
1 0 0 -27.11% 6.64% 4.13% 4.56% 0.09% 3.82% 4.14%
1 0 1 -53.23% 3.25% 0.86% 5.20% 2.68% 0.90% 0.68%
1 1 0 -54.37% 0.24% -1.64% 5.80% 3.41% -0.16% -0.39%
1 1 1 -57.98% 1.88% -0.49% 1.83% -0.32% 0.06% 0.06%

Table 4.1.: This table presents the simulation outcomes for the Simple Triad benchmark,
comparing the efficiency of various NUMA memory allocation strategies.
Here, HBM2 and DDR5 are encoded as 0 and 1, respectively. The column
“DDR5 (NoP)” illustrates the speedup introduced by allocating vectors on
DDR5 against HBM2 (0, 0, 0). Furthermore, the columns labeled “Agg” and
“TiA”, associated with the corresponding Prefetcher, provide detailed insights
into the performance variations, both improvements and declines, relative to
the NoP baseline across different NUMA memory allocations. Here, “all”
signifies the activation of prefetching on both DDR and HBM memories,
while the remaining categories specify the devices on which prefetching is
enabled.

leads to memory contention. Under these conditions, vector 𝑎 is waiting for data from
both vectors for its writeback operation. This is observable by the performance drawback
of −16.22%. A significant performance drawback is noted when vector 𝑎 is allocated at
DDR5. In the initial scenario (1, 0, 0), contrary to expectations which might suggest a
mitigation of performance impact relative to previously discussed configurations, this
specific arrangement results in a performance drawback of −27.11%. This outcome
is largely attributed to the necessity for the CPU to complete the load operation for
vector 𝑎 in DDR5. Moreover, the shift in core affinity closer to DDR5 nodes within
the mesh topology, as shown in Figure 3.2, makes the situation worse by introducing
additional latency to the data transfer from the HBM2 node to the CPU core. Insights
from prior analysis reveal significant performance drawbacks for configurations (1, 0, 1)
and (1, 1, 0), with performance degradations of −53.23% and −54.37%, respectively,
underscoring the substantial effect of DDR5 node allocation on system efficiency.

The performance outcomes highlight the limitations associated with the NUMA node
allocation, specifically HBM2 and DDR5, for this benchmark. The Subsequent analysis
will focus on the potential effects of prefetching with the introduced optimization strategies.
Hereby, distance and degree optimization strategies are enabled, employing the most
voted distance for both the TiA and Agg Prefetcher.

In scenarios where prefetching is activated for both HBM2 and DDR5 memory, with the
allocation (0, 0, 0), notable performance improvements are observed, with speedup values
reaching 19.40% for the TiA Prefetcher and 19.73% for the Agg Prefetcher. Conversely,

82

4.3. Evaluation

allocating (0, 0, 1) or (0, 1, 0) results in a decrease in speedups, highlighting the memory
contention issues for DDR5. This is further elucidated by examining the configurations
where prefetching is individually enabled for DDR5 and HBM2. Specifically, prefetching
solely on DDR5 demonstrates negligible impact on performance, with speedup values
ranging between −4.31% and 1.55%. In contrast, when prefetching is exclusively applied
to HBM2, a substantial increase in speedup is noted, with values spanning from −0.36%
to 9.58%. Given the observed impacts of individual prefetching strategies, it becomes
evident that DDR5 memory acts as the primary bottleneck, accounting for the observed
decline in performance when prefetching is employed across both memory types (in the
“all” case).

When allocating (1, 0, 0), a noticeable improvement in performance is observed. This
enhancement can be attributed to the adjustment in core affinity, which shifts closer to the
DDR5 channel, optimizing the latency for data retrieval from vector 𝑎. This improvement
is consistent across all prefetching scenarios. Specifically, when prefetching is applied to
both HBM2 and DDR5, the observed speedup is 6.64% for the Agg Prefetcher and 4.13%
for the TiA Prefetcher. Prefetching exclusively on DDR5 yields a speedup of 4.56% for
Agg and a marginal speedup of 0.09% for TiA. Conversely, when prefetching is limited
to HBM2, the speedup recorded is 3.82% for Agg and 4.14% for TiA. These findings
indicate that aligning core affinity closer to the DDR5 channel mitigates data retrieval
latency for vector 𝑎 to some extent. Nevertheless, the overall impact of prefetching on
performance enhancement remains modest. Importantly, prefetching solely on HBM2
proves beneficial for the data retrieval from vectors 𝑏 and 𝑐, which now incur increased
latency due to the proximity of the core to the DDR5 channel. This elucidates the
performance speedups observed when employing prefetching across both HBM2 and
DDR5 memory types. The pattern holds true when allocating (1, 0, 1) or (1, 1, 0).
However, as the number of vectors allocated on DDR5 increases, the positive impact
observed on HBM2 diminishes, and performance becomes predominantly reliant on
DDR5. Concurrently, an escalation in the number of demand requests on DDR5 memory
exacerbates stress, leading to increased memory contention.

To prove these insights, the configuration is modified to increase the number of DDR5
channels from one to two for the same simulation. Results, as illustrated in Table 4.2,
with prefetching enabled for both HBM2 and DDR5, reveal a significant improvement
in speedup values, particularly evident in the “DDR5 (NoP)” column. This adjustment
showcases a considerable enhancement in performance compared to the scenario with a
single DDR5 channel. Notably, the performance speedup for the allocation (0, 0, 1) or
(0, 1, 0) improved from −8.52% to −2.96% and from −8.38% to −3.19%, respectively.
Allocating (0, 1, 1) exhibited an even more significant improvement, from −16.22%
to −1.83%, suggesting the elimination of memory contention. However, due to the

83

4. Experimental Analysis and Evaluation

proximity of the core to HBM2, some latency in data retrieval for vectors allocated on
DDR5 persists. Adjusting the core affinity closer to the DDR5 channels resulted in a
significant performance improvement, with speedup values shifting from −27.11% to
5.58%. This enhancement can be attributed to the differential bandwidth constraints
associated with specific memory allocations. For instance, the allocation (1, 0, 0) is
primarily limited by the DDR read bandwidth, which stands at 8.76𝐺𝐵/𝑠. Conversely,
the baseline allocation (0, 0, 0) is constrained by the HBM write bandwidth, which is
8.06𝐺𝐵/𝑠. However, allocating additional vectors on DDR5 still lead to performance
drawbacks. Specifically, in the context of a single DDR5 channel scenario, performance
degradation was observed at −54.37% and −57.98%. When the configuration is adjusted
to include two DDR5 channels, the performance degradation improves but remains
significant, recorded at −23.70% and −23.27%, respectively. This shift underscores a
significant performance bottleneck, further exacerbated by the increased demand on
DDR5 memory. Nonetheless, across all scenarios, the implementation of prefetching
strategies, along with their respective optimization techniques, exerts a substantial positive
impact on system performance. This observation attests to the efficacy of these strategies,
indicating their potential to significantly enhance performance in environments that are
not facing memory contention.

Vector a Vector b Vector c DDR5 (NoP) Agg (All) TiA (All)
0 0 0 0.00% 19.44% 19.43%
0 0 1 -2.96% 19.87% 20.00%
0 1 0 -3.19% 21.65 % 11.94%
0 1 1 -1.83% 16.40% 9.43%
1 0 0 5.58% 13.09% 11.06%
1 0 1 -23.28% 14.73% 15.16%
1 1 0 -23.70% 7.49% 10.59%
1 1 1 -23.27% 6.92% 4.50%

Table 4.2.: This table presents the simulation outcomes for the Simple Triad benchmark,
comparing the effectiveness of different NUMA memory allocation strategies
while highlighting the impact of doubling the DDR5 channels from one to
two. Here, HBM2 and DDR5 are encoded as 0 and 1, respectively. The
column “DDR5 (NoP)” illustrates the Speedup introduced by allocating
vectors on DDR5 memory against HBM2 (0, 0, 0). Furthermore, the columns
labeled “Agg” and “TiA”, associated with the corresponding Prefetcher,
provide detailed insights into the performance variations, both improvements
and declines, relative to the NoP baseline across different NUMA memory
allocations. Here, “all” signifies the activation of prefetching on both DDR
and HBM memories.

84

4.3. Evaluation

Conclusion

The detailed examination of the performance from the Simple Triad benchmark in NUMA
configurations, focusing on DDR5 and HBM2 memory nodes, reveals dynamics that are
crucial for optimizing computational tasks. It outlines the impact of memory allocation
across different NUMA nodes and the efficacy of prefetching strategies, leading to several
insights.

Firstly, the analysis underscores that the choice of memory allocation significantly affects
the performance, with the allocation of vectors on DDR5 without prefetching notably
reducing efficiency. This finding show the importance of HBM2 for highly spartial
locality benchmarks, maintaining high performance.

Secondly, the impact of prefetching on HBM2 and DDR5 memory demonstrates that
performance enhancements depend significantly on the NUMA node allocation. When
all vectors are allocated on the HBM node, speedups of up to 19.73% are achievable.
Prefetching on HBM2 typically outperforms prefetching on DDR5, signaling DDR5 as
a bottleneck in the system. Enhancing DDR5 by adding more channels significantly
improves outcomes, mitigating the adverse effects of contention. This improvement
underscores the effectiveness of the implemented Prefetcher together with the introduced
optimization strategies. Overall the Agg Prefetcher demonstrates superior performance
than the TiA Prefetcher under the same configuration. This advantage is attributed to
learning patterns that must not have a PC due to its pattern learning algorithm. In the
evaluation, a single thread was sufficient to induce memory contention in the DDR5
device. Increasing the threads is not necessary and is going to mirror the behavior of the
simple triad benchmark from section 4.3.1.

4.3.4. Resource Estimation

The resource estimation focuses on the optimization strategies discussed in Section 3.6.
These strategies are enhancing the capabilities of existing state-of-the-art prefetchers,
which, although not initially developed within the Gem5 simulation environment, are
implemented in actual hardware.

Degree Optimization

For the implementation of degree optimization, it is essential to consider following
parameters. Firstly, the number of NUMA nodes, with HBM2 and DDR5 this accounts
to two. Secondly, the resource estimation of the epoch counter, bandwidth and accuracy

85

4. Experimental Analysis and Evaluation

metrics. The optimization degree is assessed at the conclusion of each epoch, based on a
detailed analysis of statistics, bandwidth, and accuracy metrics.
Epoch Counter: In the current configuration, an epoch length of 128,000 cycles is
defined, necessitating a 17-bit counter for the representation. This counter resets to zero at
the conclusion of each epoch and increments by one after every clock cycle. Consequently,
the total bit requirement for the epoch counter is represented as 𝑆𝑖𝑧𝑒epochCount = 17-bit.
Bandwidth Measurement: Bandwidth is measured by initiating a counter that records
the number of cycles required for data to arrive. This counter ceases upon deallocation
in the TBE. As depicted in Figure 3.6 within Section 3.5, the maximum observed
values were 750 cycles for HBM2 and 120 cycles for DDR5. To ascertain the average,
all measurements are aggregated, and the sum is preserved until the end of an epoch.
Additionally, the total number of measurements is counted. To prevent overflows and
account for more latencies, a 32-bit design for each counter, one to compute and retain
the average value and another to record the measurement count, are defined. Based
on these averages, the logic subsequently classifies latency into high, medium, or low
categories, for which two 10-bit registers suffice for setting medium and high thresholds.
Consequently, considering that each TBE entry requires 84 bits, the storage calculation is
performed for each NUMA node, denoted as 𝑁NUMA. Hence, the total storage requirement,
𝑆𝑖𝑧𝑒BW, is determined by the formula 𝑆𝑖𝑧𝑒BW = TBE SIZE × 𝑁NUMA × 84-bit.
Accuracy Measurement: As delineated in Section 3.5, accuracy is determined by the
ratio of useful prefetches to total prefetches, with the highest value for sent prefetches
approximated at 40,000, indicating that 16 bits are sufficient for representation.
Useful prefetches are defined by the sum of timely and late prefetches. To differentiate
between data that have been requested by a prefetcher and by other means a bit is
added to each entry in the cache and MSHR. Upon a cache hit involving marked data,
the corresponding timely counter is incremented. Conversely, when a demand request
encounters a hit within the MSHR, an entity that enhances cache miss handling by
monitoring outstanding requests and facilitating access coalescence, as incorporated
within the TBE of the provided simulation platform [15], the late prefetch counter is
incremented if the prefetch marker is active.
Accuracy metrics are stored in a 32-bit float, necessitating three 16-bit counters for
calculation. For categorization into high, medium, or low, two additional 32-bit floats,
for medium and high thresholds, are required. Therefore, accounting into 144 bits. The
calculation of the Accuracy metric is applied per NUMA node, denoted as 𝑁NUMA. The bit
encoding for both L2D SIZE and TBE SIZE, required to identify prefetches, is considered
once for each parameter. This approach results in the total storage requirement, 𝑆𝑖𝑧𝑒Acc,
being expressed by the equation 𝑆𝑖𝑧𝑒Acc = TBE SIZE + L2D SIZE + 𝑁NUMA × 144-bit.

86

4.3. Evaluation

Degree Adjustment: The maximal allowable degree is capped at 32, necessitating six
bits for representation. Degree adjustment values, either to increment or decrement
slowly or rapidly, influence the bit size of those registers, with two 4-bit registers deemed
adequate for the actions defined in Table 3.4. Therefore, it is accounted for 14 bits. In
this work, the adjustment of degree is conducted on a per NUMA node basis, represented
as 𝑁NUMA. Consequently, the total storage requirement, 𝑆𝑖𝑧𝑒degreeAdj, can be formulated
as 𝑆𝑖𝑧𝑒degreeAdj = 𝑁NUMA × 14-bit.

After the end of an epoch, the decision making for the degree is executed. The calculations
are small problems that do not affect the system efficiency and can be done in existing
hardware. However, one bit per each entry in the MSHR and L2 data cache is needed.

Total Memory Estimation: The overall requirement bits for the memory can be expressed
by the sum of 𝑆𝑖𝑧𝑒epochCount, 𝑆𝑖𝑧𝑒BW, 𝑆𝑖𝑧𝑒Acc and 𝑆𝑖𝑧𝑒degreeAdj. And is expressed by
𝑆𝑖𝑧𝑒DegOpt in the formula below:

𝑆𝑖𝑧𝑒DegOpt = 𝑆𝑖𝑧𝑒epochCount + 𝑆𝑖𝑧𝑒BW + 𝑆𝑖𝑧𝑒Acc + 𝑆𝑖𝑧𝑒degreeAdj

= 17-bit + TBE SIZE × 𝑁NUMA × 84-bit + TBE SIZE + L2D SIZE
+ 𝑁NUMA × 144-bit + 𝑁NUMA × 14-bit

= 17-bit + TBE SIZE × 𝑁NUMA × 84-bit + TBE SIZE + L2D SIZE
+ 𝑁NUMA × 158-bit

Lookahead Optimization

The lookahead optimization technique is pivotal for enhancing the timeliness for Prefetcher,
incorporating the following parameters. It employs a queue for learning new triggers,
with each entry comprising two 64-bit address registers. Additionally, a lookahead
component, typically implemented and addressed in state of the art Prefetcher as distance,
is utilized. In scenarios where the lookahead register is absent, its maximum value is
depending upon the page size. For a 4096 byte page, a maximum lookahead of 63 is
calculateable, necessitating a 6-bit representation.

A key functionality is the employment of a voting mechanism. This mechanism determines
the prefetch distance by either computing the average of all votes or selecting the most
frequently occurring distance. This process requires only a single bit for decision-making.
It relies on 63 arrays, each employing a 32-bit counter, to vote for corresponding lookahead
values. Additionally, to facilitate the computation of averages, two 32-bit counters are
employed to aggregate the values of all lookaheads and their respective counts.

The configuration of the queue size is adjustable, with the present setup specifying 32
entries per queue. Each entry within the history table, which accommodates distinct sizes

87

4. Experimental Analysis and Evaluation

for any Prefetcher such as Agg and TiA, is allocated its own queue, culminating in a total
memory requirement expressed as 𝑁×32×2×64-bit = 𝑁×4096-bit, where 𝑁 represents
the size of the history table. The memory footprint attributed to the voting mechanism,
for each NUMA node, is determined as 𝑁NUMA × (63× 32 + 64)-bit = 𝑁NUMA × 2080-bit.
Thus, the overarching memory footprint is defined by 𝑁 × 4096-bit + 𝑁NUMA × 2080-bit.
Addressing the potential for escalated hardware costs with large 𝑁 , it is proposed for future
exploration to reduce this impact by not allocating queues to all table entries. Instead,
leveraging a dynamic allocation strategy for active entries could significantly decrease
the overall memory footprint, making the system more scalable and cost-effective.
For operational integration, the implementation of notification functionalities, specifically
notifyFill, notifyLate, and notifyTimely, within the cache controller is necessary.
These functions are instrumental in managing the queue effectively by signaling cache
events, thereby enabling the computation of new triggers based on cache hits or misses.
The process involves utilizing an adder to subtract two addresses to derive a new distance,
followed by a right shift by the cache block size to divide through the cache block size,
thus yielding the lookahead value. A 6-bit register is requisite for storing the lookahead
value. Furthermore, a basic gate logic is required for managing the operations of the
queue, including entry, read, and write functions. Additionally, a comparator is necessary
for conducting searches within the queue. The principal implementation effort focuses
on the modification of existing cache controllers to accommodate these enhancements
together with the requiered memory.

88

5. Related Work

The quest to overcome the “Memory Wall” and enhance prefetching mechanisms has led
to substantial research within the realm of high-performance computing. This chapter
delves into seminal works that have shaped current understanding and practices in
prefetching strategies, memory management, and the utilization of novel architectures to
optimize data access and processing efficiency.

5.1. Berti: an Accurate Local-Delta Data Prefetcher

In the study [26] the authors present a timely local-delta Prefetcher, attached to the
L1 data cache, with a focus on the difference between successive cache line addresses
initiated by the same instruction. This methodology is similar to the history table used in
the PC-based Stride Prefetcher and aims to refine prefetch decisions, thereby elevating
system efficiency and minimizing energy consumption.

What sets Berti apart is the differentiation between deltas and strides. Deltas are
characterized as the variances in cache line addresses accessed in sequence by the same
IP (Instruction Pointer), providing an in-depth insight into memory access patterns.
Conversely, strides are defined by the differences between addresses of consecutive load
accesses, irrespective of their chronological order or the initiating instruction. Berti
incorporates latency measurements to issue prefetch requests that are both timely and
essential. This is achieved by meticulously monitoring access history to pinpoint deltas
that result in successful prefetches, thereby honing the proficiency of the system in
preloading data prior to its request, which in turn boosts overall system performance.

The optimization strategy deployed in this thesis, as discussed in Section 3.6, contrasts
with other methodologies by adapting the prefetch degree to utilize system bandwidth
more effectively during periods of low utilization. This approach aims to preload
additional data into the cache, thereby enhancing accuracy and coverage. Berti, however,
strives to load only those addresses deemed crucial for computation, a design choice
reflecting a preference for maximizing bandwidth usage or prioritizing relevant requests
to bolster energy efficiency. The methodology for learning timely prefetches in Berti
parallels the approach taken in this work, with both employing a history table to discover

89

5. Related Work

new prefetch triggers. While Berti utilizes the latency between a request and a write to
identify suitable deltas, this work learns triggers by navigating through the queue to find
a physical address within the same page as the prefetch trigger, thereby establishing the
prefetch distance. Additionally, voting mechanisms are employed to determine the most
frequently selected or mean distance for the Prefetcher to utilize.

Working with virtual memory over physical memory, Berti is mirroring the approach
in this work. This strategy allows for prefetch requests irrespective of the memory
hierarchy and therefore effectively implement cross-page prefetching and recognize larger
deltas across page boundaries. However, this thesis predominantly focuses on physical
addresses, noting that while virtual addresses facilitate the identification of streams due to
the virtual address space, they also incur the overhead of address translation, potentially
adding latency when prefetch predictions are incorrect.

It would be intriguing to implement Berti within the Gem5 simulator to assess its
performance on the L2 data cache. Furthermore, exploring the potential of combining the
methodologies of both Berti and this work for timely prefetches presents an interesting
avenue for future investigation.

5.2. T-SKID: Predicting When to Prefetch Separately
from Address Prediction

The research presented in [23] decouples the timing of prefetch operations from their
address predictions. Unlike conventional Prefetcher that primarily predict the next
cache line addresses based on observed strides, T-SKID incorporates a layer of temporal
prediction. This innovative strategy aims to optimize the timing of prefetches, ensuring
data is fetched not merely in anticipation of future requests but precisely at the most
opportune moment to minimize cache evictions before the data’s utilization.

T-SKID is utilizing the temporal correlation between load instruction Program Counters,
supported by a sophisticated ensemble of four tables: the Address Prediction Table,
the Target Table, the Insight Prefetch Table, and the Recent Request PC Queue. These
components collectively enable T-SKID to pinpoint the optimal timing for prefetching
through meticulous analysis of memory access sequences and timings.

• Address Prediction Table: Identifying which data to prefetch by recording stride
patterns and the last accessed addresses, facilitating the prediction of future cache
line requests based on historical access behaviors.

• Target Table: Links trigger PCs to their corresponding target PCs, effectively
separating the timing of prefetches from their addresses. This enables T-SKID

90

5.2. T-SKID: Predicting When to Prefetch Separately from Address Prediction

to determine the most opportune moments for prefetching, associating specific
instruction sequences with optimal prefetch timings.

• Insight Prefetch Table: Tracks issued prefetches that are pending cache fill,
recording the initiating PC and the prefetch address. This table is integral in
assessing the timing and effectiveness of prefetch operations.

• Recent Request PC Queue: Logs PCs that have recently triggered successful
prefetches, providing a historical context that helps refine timing predictions for
future prefetches based on recent outcomes.

Methodical observation and analysis of memory access patterns allow T-SKID to
accurately predict when future accesses are likely to occur. By monitoring cache miss
and fill events, T-SKID learns the optimal timing for prefetches, dynamically adjusting
prefetch timings based on the immediacy of data usage post-cache fill. This results in a
fine-tuned prefetching process that ensures data is fetched at neither too early to avoid
unnecessary cache evictions nor too late to effectively conceal memory latency. The
dynamic adjustment strategy, informed by learned intervals between prefetch requests
and actual data usage. Exclusively operational at the L1 data cache level, T-SKID
exerts a direct influence on data retrieval processes, significantly reducing cache misses.
However, the study does not explicitly detail the use of virtual or physical addresses in its
prefetching decisions.

The methodology introduced is akin to the Timely Aware Stride Prefetcher, an expansion
of the PC-based Stride Prefetcher. This work differentiates by employing three tables
for the Timely Aware Stride Prefetcher—PC Tables, PC Entry Tables, and the Fill-done
Queue. Conversely, the Aggressive Prefetcher, an advancement of the Stream-based
Prefetcher, utilizes two tables: the Stream Entry Table and the Fill-done Queue. Storing
recent prefetch addresses in the Fill-done Queue enables the learning of new distances
for enhanced timeliness in address prediction. Meanwhile, the Entry Tables are central
to identifying accurate access patterns, thereby improving the precision of prefetching
strategies. Unlike T-SKID, which incorporates a latency counter for timing prediction,
this methodology opts for a more straightforward approach by examining the queue for
addresses located within the same page. By evaluating the differences between these
addresses, a new distance is calculated and then applied to the prefetching formula. This
method simplifies the adjustment of prefetch distances, aiming to refine both the timing
and accuracy of prefetch operations.

91

5. Related Work

5.3. Classifying Memory Access Patterns for
Prefetching

The work [3] introduces a software methodology for classifying memory access patterns
to enhance prefetching techniques. By analyzing dataflow information, this methodology
identifies diverse access patterns including reuse, strides, reference locality, and complex
address generation across various workload kernels. This approach facilitates the
computation of the next address for the majority of top-missing instructions, leveraging a
dataflow-based analysis to classify significant cache misses. It enables precise reasoning
about the necessary computations for address generation and the optimal timing for
prefetching. This methodology contrasts sharply with traditional hardware Prefetcher,
often constrained to simplistic next-line and stride designs, by showcasing a broader
spectrum of access patterns. The application of this classification to memory-intensive
applications illustrates its potential to significantly improve prefetching effectiveness,
offering insights into reclaiming performance lost to memory access stalls.
Despite its comprehensive analysis framework, the methodology acknowledges the
challenges in fully understanding complex memory access patterns, given the intricate
data dependency analysis required for all load instructions causing cache misses. The
integration of this software prefetching approach with the Prefetcher investigated in this
work could provide further advancements in prefetching strategies, potentially unlocking
new levels of performance optimization.

5.4. Feedback-Directed Prefetching

The work [33] introduces a feedback mechanism to dynamically enhance the functionality
of hardware prefetching. This innovative method analyzes prefetch accuracy, timeliness,
and cache pollution in execution time. This allows for immediate adjustments to
the aggressiveness of Prefetcher and the cache insertion policies based on current
performance.
Dynamically adjusting the placement of prefetched blocks in the cache, based on the
behavior observed from the Prefetcher, is beyond the conventional MRU insertion. This
approach selectively utilizes different cache positions, such as LRU or LRU-4, to diminish
cache pollution and boost prefetching efficiency.
The Stream-based Prefetcher at the heart of this study observes multiple access streams
to anticipate future data requests, ensuring data is preloaded into the cache efficiently.
While the paper does not specify the memory addressing mode, it is implied that physical
addresses are utilized, consistent with standard hardware prefetching practices, to avoid

92

5.4. Feedback-Directed Prefetching

the complications associated with address translation. The Stream-based Prefetcher in
this thesis, introduced in Section 3.3 was inspired by this work and functions similarly. A
significant aspect of this approach is the windowing technique, which dynamically tracks
memory accesses within a specific range. This range is defined from a start address 𝐴
to an end address 𝑃, with the maximum distance between 𝐴 and 𝑃 determined by the
distance. When a demand L2 cache access is detected within this region, the Prefetcher
initiates prefetch requests for subsequent blocks, ranging from 𝑃 + 1 to 𝑃 + 𝑁 , where
𝑁 represents the degree. The tracking window advances by 𝑁 blocks to encompass the
region between 𝐴 + 𝑁 and 𝑃 + 𝑁 . However, the approach has been refined with several
enhancements, including maintaining sequential integrity, ensuring a prefetch 𝑃 does not
exceed page boundaries, and implementing a window “warming-up” approach to gain
deeper insights into the observed patterns. These improvements contribute to a more
robust and effective prefetching strategy.
Crucial metrics influencing the feedback-directed adjustments include:

• Prefetch Accuracy: Indicates the success rate of prefetches in being utilized before
cache eviction, reflecting the prediction accuracy.

• Prefetch Lateness: Measures the timeliness of prefetches to ensure data arrives
neither too early nor too late.

• Prefetcher-Generated Cache Pollution: Assesses the negative impact of
prefetches on cache health, especially the displacement of critical data by
unnecessary prefetches.

The foundation of this approach is a Sampling-based feedback collection mechanism,
which gathers prefetching behavior data over predetermined intervals to drive strategic
modifications. The method outlined in [33] utilizes a tabular decision-making process to
alter the aggressiveness of Prefetcher, prioritizing metrics such as prefetch accuracy, late-
ness, and cache pollution, while not accounting for bandwidth considerations. Moreover,
[33] distinguishes itself by employing this decision table to specifically adjust prefetch
distance and degree, marking a significant difference in the approach to optimizing
prefetch efficiency. This is similar to the degree adjustment within this work, Section 3.6,
but does not consider the bandwidth utilization. However, the tabular decision-making
process contrasts with the strategy that leverages a queuing mechanism to improve the
timeliness of prefetches through historical analysis and adjusts the prefetch distance, like
explained in Section 3.6.
The implementation of feedback-directed prefetching demonstrates substantial perfor-
mance enhancements and decreases in memory bandwidth consumption across various
benchmarks, underscoring the effectiveness of feedback mechanisms in refining hardware
prefetching strategies. Such advancements herald the development of more sophisticated
and flexible prefetching techniques in upcoming processor architectures. Additionally,

93

5. Related Work

exploring dynamic replacement strategies for caches, in conjunction with evaluating the
cache pollution metric, presents a promising avenue for further refining the optimization
strategies delineated in this work.

5.5. Access Map Pattern Matching

The paper [19] presents an interesting approach to hardware data prefetching, introducing
AMPM (Access Map Pattern Matching). AMPM aims to overcome the limitations of
existing Prefetcher by utilizing a memory access map and hardware pattern matching
logic to accurately predict and prefetch data into cache memory in advance. This
technique is designed to be robust against the modifications and alterations in memory
address sequences caused by aggressive optimizations like out-of-order execution. The
AMPM Prefetcher divides the memory address space into fixed-size regions, mapping
each cache line within these regions to entries in a bitmap-like data structure. This
allows for the detection of memory access patterns from the structure, independent of the
memory access order or instruction addresses, thus achieving high performance even in
aggressively optimized environments.

The research evaluates the AMPM Prefetcher through cycle-accurate simulations us-
ing memory-intensive benchmarks. It demonstrates that AMPM significantly improves
prefetch coverage and IPC (Instructions Per Cycle) compared to state-of-the-art Prefetcher,
showing an increase in IPC by 32.4%. AMPM contrasts with other prefetching method-
ologies by focusing on identifying all possible strides at a time through pattern matching,
leading to high prefetch coverage and low latency in address prediction. The hardware
cost for the prefetching mechanism is reasonable, using basic arithmetic units such as
adders and shifters for the pattern matching logic.

Exploring how the optimization strategies, discussed in Section 3.6, of this work perform
in conjunction with AMPM logic presents an intriguing research direction.

94

5.6. Clustering Modes in Knights Landing Processors

5.6. Clustering Modes in Knights Landing Processors

The study by [36] delivers an in-depth analysis of clustering modes in Intel’s 2nd
generation Xeon Phi processors Knights Landing (KNL). It explores the optimization of
the on-die mesh interconnect via clustering modes such as all-to-all, quadrant, hemisphere,
SNC-4 (Sub-NUMA Clustering-4), and SNC-2. The work emphasizes the importance of
making applications NUMA-aware to fully exploit these modes for enhanced performance.
It showcases notable enhancements in their memory subsystem. These advancements are
primarily due to the integration of SNC modes, which optimize latency and bandwidth by
dividing the processor into several NUMA domains. HBM is designed to provide high
bandwidth but at a lower capacity, making it ideal for rapidly processing critical data.
By contrast, DDR memory, offering a larger storage capacity suitable for less frequently
accessed data, comes with the trade-off of lower bandwidth. This combination offers a
balanced approach to memory management, crucial for high-performance computing
applications.
This comprehensive guide is presented as an essential resource for developers seeking
to optimize KNL processor applications. By following the recommended strategies
for memory allocation, thread pinning, and selecting the appropriate clustering mode,
developers can significantly enhance application performance, especially in scenarios
demanding high parallelism and memory bandwidth. Efficient use of HBM and DDR,
along with NUMA-aware programming, significantly enhances the performance of
memory-intensive tasks in the KNL architecture [36]. However, a comparable imple-
mentation for ARM-based devices is currently lacking. It is essential to note that the
architecture discussed in Section 3.2 also utilizes the benefits of SNC modes for an
Arm-based chip.

95

6. Conclusions and Future Directions

In this thesis, the exploration and evaluation of optimization strategies for prefetching,
focusing on Stream and PC-based stride Prefetcher, have been pivotal in addressing
latency challenges in HPC environments. The core of these strategies lies in the dynamic
adjustment of prefetching parameters, degree and distance, to match system demands,
thus optimizing system performance by mitigating latency through strategic prefetching.
The adaptability of these strategies ensures an efficient balance between aggressiveness
in prefetching during high and low demand request periods, alongside the refinement of
prefetch distance to reduce late prefetches and effectively conceal latency.
The findings demonstrate that adaptive prefetching significantly improves system per-
formance by achieving a near-optimal balance in prefetching parameters, leading to
substantial performance gains, particularly when leveraging the high bandwidth of HBM2
memory. However, the performance impact varies with memory type. While DDR5
introduces challenges for memory-intensive applications due to increased latency, less
demanding applications still benefit from the adaptive approach. The research underscores
the necessity for sophisticated prefetching strategies, particularly for DDR5 memory, to
manage memory contention efficiently. The strategic approach, informed by insights from
benchmarks, recommends maintaining a consistent minimum prefetching degree and
distance in high bandwidth scenarios, while allowing for adaptability in other contexts,
to optimize performance benefits. This approach merits further investigation to fully
understand its impact on system efficiency and performance optimization.
This work lays the groundwork for future research in prefetching optimization, suggesting
further exploration in adaptive strategies across heterogeneous memory architectures and
computational workloads. The adaptability and performance gains observed highlight the
potential for advanced prefetching techniques to significantly contribute to the efficiency
and effectiveness of high-performance computing systems.
The implementation of prefetching data across different cache locations, coupled with
the consideration of metrics such as cache pollution as discussed in Section 5.4, could
significantly enhance the efficacy of heterogeneous memory-aware prefetching strategies.
Incorporating the capability to prefetch across page boundaries, as demonstrated by
[22], is anticipated to improve coverage, thereby leading to more precise prefetching
than current mechanisms offer. Additionally, incorporating lookahead adjustment for

97

6. Conclusions and Future Directions

more timely data retrieval presents a promising avenue for research. The exploration
of large page sizes may also contribute to improved performance and warrants further
investigation.
Extending the optimization strategies introduced in this work to other prefetching
algorithms, such as AMPM (Section 5.5), and other diverse techniques reviewed in
Chapter 5, will provide a more comprehensive understanding of the presented work.
It is noteworthy that the Prefetcher discussed herein primarily focus on Stream-based
access patterns. However, applications reliant on machine learning, graph analytics, and
sparse linear algebra often exhibit irregular memory access patterns due to operations
such as traversing graph edges or accessing non-zero elements in sparse matrices. These
patterns typically lack temporal or spatial locality, leading to prolonged memory stalls
and increased bandwidth demands, as also observed with the input dense vector in
MINIFE SpMV. The Indirect Memory Prefetcher (IMP) proposed by [38] efficiently
addresses these access patterns. Evaluating the optimization strategies with IMP offers
a promising direction for enhancing prefetching in scenarios characterized by indirect
memory accesses.

Further research into applying these optimization strategies across a broader spectrum of
benchmarks will enrich the understanding of their effectiveness. Optimizing memory
requirements for the developed strategies could also reduce hardware costs, making
the implementation of such Prefetcher more feasible in real-world hardware. Another
potential improvement involves the adoption of variable epoch lengths, allowing the
prefetching strategies to adjust the degree and lookahead parameters based on real-time
statistics rather than adhering to a fixed epoch duration. This approach could lead
to a more dynamic and efficient update mechanism for Prefetcher, optimizing their
configuration more rapidly and enhancing performance across various workloads.

98

A. Appendix Chapter

A.1. Hardware Configuration Parameters

Parameter Value Description
Simulation Mode Full System Mode Indicates that the simulation is in Full System

Mode.
Checkpoint CPU
Model

AtomicSimple Specifies the CPU model used for check-
pointing.

Number of CPUs 20 Indicates there are 20 CPUs in the system.
SLCs per CPU 1 Represents the number of SLC per CPU.
CPU Clock Speed 2.4GHz Specifies the clock speed of the CPUs.
CPU SVE Support Enabled Indicates that Scalable Vector Extension

(SVE) is enabled for the CPUs.
SVE Vector Length 256 Specifies the vector length for SVE.
Branch Predictor BiMode Describes the branch predictor used.
Memory Size
(HBM2)

1GB Indicates the size of HBM2 memory.

HBM2 Channels 8 Represents the number of channels for
HBM2 memory.

Memory Size (DDR5) 2GB Specifies the size of DDR5 memory.
DDR5 Channels 1 Indicates the number of channels for DDR5

memory.
Cache Levels 3 Specifies the number of cache levels in the

system.
Last Level Shared Yes Indicates that the last-level cache is shared

among CPUs.
Cache Line Size 64 Bytes Specifies the size of cache lines.
L1 Instruction Cache
Size

64KB Represents the size of the L1 Instruction
Cache.

99

A. Appendix Chapter

Parameter Value Description
L1 Instruction Cache
Assoc.

4 Describes the associativity of the L1 Instruc-
tion Cache.

L1 Instruction Cache
Latency

Tag: 1, Data: 1, Re-
sponse: 1

Shows the latency for L1 Instruction Cache
(tag/data/response).

L1 Data Cache Size 64KB Specifies the size of the L1 Data Cache.
L1 Data Cache Assoc. 4 Describes the associativity of the L1 Data

Cache.
L1 Data Cache La-
tency

Tag: 1, Data: 2, Re-
sponse: 1

Shows the latency for L1 Data Cache (tag/-
data/response).

IPTW Cache Size 8KiB Indicates the size of the Instruction Prefetch
Table Walker (IPTW) cache.

IPTW Cache Assoc. 4 Describes the associativity of the IPTW
cache.

IPTW Cache Latency Tag: 1, Data: 1, Re-
sponse: 1

Shows the latency for the IPTW cache (tag/-
data/response).

DPTW Cache Size 8KiB Specifies the size of the Data Prefetch Table
Walker (DPTW) cache.

DPTW Cache Assoc. 4 Describes the associativity of the DPTW
cache.

DPTW Cache Latency Tag: 1, Data: 1, Re-
sponse: 1

Shows the latency for the DPTW cache (tag/-
data/response).

L2 Cache Size 1MB Indicates the size of the L2 Cache.
L2 Cache Assoc. 8 Describes the associativity of the L2 Cache.
L2 Cache Clusivity Mostly Inclusive Specifies that the L2 Cache is mostly inclu-

sive.
L2 Cache Latency Tag: 2, Data: 4, Re-

sponse: 4
Shows the latency for the L2 Cache (tag/-
data/response).

SLC Cache Size 2MB Represents the size of the SLC.
SLC Cache Assoc. 16 Describes the associativity of the SLC.
SLC Cache Clusivity Mostly Exclusive Specifies that the SLC Cache is mostly ex-

clusive.
SLC Cache Latency Tag: 2, Data: 10, Re-

sponse: 10
Shows the latency for the SLC Cache (tag/-
data/response).

NOC Active Yes Indicates that the Network-on-Chip (NOC)
is active.

NOC Clock Speed 2GHz Specifies the clock speed of the NOC.
NOC Data Width 64 bits Indicates the data width of the NOC.

100

A.1. Hardware Configuration Parameters

Parameter Value Description
NOC Model Garnet Describes the model used for the NOC.
Garnet VCS per
VNET

4 Specifies the number of Virtual Channels per
Virtual Network in Garnet.

Garnet Routing Algo-
rithm

0 Describes the routing algorithm used in Gar-
net.

Garnet Deadlock
Threshold

128 Specifies the deadlock threshold for Garnet.

Garnet Link Bridges No Indicates whether link bridges are used in
Garnet.

Topology Mesh Specifies that the system topology is Mesh.
Router Latency Tag: 2, Data: 4, Re-

sponse: 4
Describes the latency for routers in the Mesh
topology.

Mesh Link Latency 2 Shows the latency for links in the Mesh
topology.

Node Link Latency 1 Indicates the latency for node links in the
Mesh topology.

Cross-NUMA Link
Latency

5 Specifies the latency for cross-NUMA links
in the Mesh topology.

CHI Protocol Model CHI Describes the protocol model used.
RNF Routers 0-3 Lists the router numbers for the RNF.
HNF Routers 4-7 Lists the router numbers for the HNF.
SNF Mem Routers 8-11 Lists the router numbers for SNF Mem, in-

cluding High BW memory (e.g., HBM) and
Low BW memory (e.g., DDR).

SNF IO Routers 12-15 Lists the router numbers for SNF IO.
RNI IO Routers 16-19 Lists the router numbers for RNI IO.

Table A.1.: Parameters of the Arm CPU used in the Simulation

101

A. Appendix Chapter

Parameter HBM2 DDR5
Device Bus Width 128 bits 8 bits (4x8), 4 bits (16x4)
Write Buffer Size 128 128
Read Buffer Size 128 64
Burst Length 4 16
Device Size 128MB 2GB (4x8), 1GB (16x4)
Device Rowbuffer Size 2kB 1kB
Devices per Rank 1 4 (4x8), 16 (16x4)
Ranks per Channel 1 2
Banks per Rank 16 32 (4x8), 16 (16x4)
Bank Groups per Rank 4 8 (4x8), 4 (16x4)
Frequency 2400 MHz 4800 MHz
tCK 0.833ns 0.416ns
tRP 14ns 16ns
tRCD 14ns 15ns (4x8), 15ns (16x4)
tCL 14ns 16.64ns (4x8), 16.25ns (16x4)
tRAS 33ns 32ns
tBURST 1.666ns 1.664ns (4x8), 3.3ns (16x4)
tCCD L 3.332ns 3.75ns (4x8), 5ns (16x4)
tRFC 160ns 195ns (4x8), 420ns (16x4)
tREFI 3.9us 3.9us
tWR 8ns 30ns
tRTP 3.5ns 7.5ns
tWTR 3ns 5ns
tRTW 1.666ns 0.832ns
tCS 0ns 0.832ns
tRRD 1.666ns 3.328ns (4x8), 3.3ns (16x4)
tRRD L 1.666ns 5ns
tXAW 12.5ns 13.333ns (4x8), 20ns (16x4)
Activation Limit 4 4
tXP 3.332ns 7.5ns (4x8), 9.375ns (16x4)
tXS 160ns 205ns (4x8), 420ns (16x4)

Table A.2.: Specifications of HBM2 and DDR5 Memory Technologies [15]

102

A.2. Prefetcher Configuration Parameters

A.2. Prefetcher Configuration Parameters

This section highlights the configuration parameters for all implemented Prefetchers,
where some of those implement all optimization techniques discussed in Section 3.6. The
focus is on two primary types of prefetcher: the Stream-based Prefetcher, which has been
advanced to create the Aggressive Prefetcher (Agg Prefetcher), and the PC-based Stride
Prefetcher, which has evolved into the Timely Aware Stride Prefetcher (TiA Prefetcher).
A key distinction to note is that the original PC-based Stride Prefetcher does not employ
the windowing approach, a feature that has been incorporated in the TiA Prefetcher. The
configuration parameters for each of these prefetchers are systematically presented in
dedicated tables. The parameters for the Stream-based Prefetcher are outlined in Table
A.3, while those for the PC-based Stride Prefetcher are detailed in Table A.5. Additionally,
the parameters for the Agg Prefetcher and the TiA Prefetcher are respectively found in
Table A.4 and Table A.6.
Furthermore, for the purpose of epoch tuning, specific parameters are defined within
the Queued Class. These parameters are inherited by all aforementioned prefetchers.
Detailed information regarding these inherited parameters is available in Table A.7.

Parameter Description
threshConf Set confidence threshold for prefetch generation.
enableWindow Toggle windowing feature.
distance Initialize static distance.
degree Initialize static degree.
table entries Set size of the prefetcher’s cache.

Table A.3.: StreamPrefetcher Parameters

103

A. Appendix Chapter

Parameter Description
threshConf Set confidence threshold for prefetch generation.
fdQueueSize Define the queue size for each tag to calculate the distance.
enableLookahead Toggle lookahead feature.
enableVoting Toggle voting mechanism for distance adjustment.
voting avg value Select mean voting (true) or most-voted (false).
enableAdjDegree Toggle degree adjustment feature.
enableWindow Toggle windowing feature.
distance Initialize static distance.
degree Initialize static degree.
table entries Set size of the prefetcher’s cache.

Table A.4.: AggressivePrefetcher Parameters

Parameter Description
confidence counter bits Initialize the confidence counter with specified bits.
initial confidence Initialize the confidence counter with initial value.
confidence threshold Set the confidence threshold as a fraction of 100.
use requestor id Configure whether to use the requestor ID in prefetching

decisions.
degree Set the degree of prefetching as specified.
distance Set the prefetch distance as specified.
table assoc Configure the Program Counter (PC) table’s associativity.
table entries Configure the number of entries in the PC table.
table indexing policy Configure the indexing policy for the PC table.
table replacement policy Configure the replacement policy for the PC table.

Table A.5.: Stride Prefetcher Parameters

104

A.2. Prefetcher Configuration Parameters

Parameter Description
confidence counter bits Initialize the confidence counter with specified bits.
initial confidence Initialize the confidence counter with initial value.
confidence threshold Set the confidence threshold as a ratio.
use requestor id Configure the use of requestor ID in prefetch decisions.
degree Set the prefetch degree.
fill done queue size Define the size of the fill-done queue.
adapt lookahead as degree Configure lookahead adaptation for degree or distance.
enable voting Enable or disable the voting mechanism for prefetch deci-

sions.
voting avg value Determine the voting method: average or most-voted.
enable adj degree Enable or disable degree adjustment.
table assoc Set up the PC table’s associativity.
table entries Set up the number of entries in the PC table.
table indexing policy Set up the indexing policy for the PC table.
table replacement policy Set up the replacement policy for the PC table.
window monitoring Enable or disable window-based prefetching.

Table A.6.: TiAStride Prefetcher Parameters

Parameter Description
printStatsThreshold Stats print at epoch number ≥ threshold for plot generation.
numa epoch cycles Cycles in an epoch period.
numa epoch cycles reset Cycles in an epoch period for reset.
numa aware tuning enable Enable/disable global or numa-aware tuning.
numa pf distance max threshold Pf distance threshold.
numa pf degree max threshold Pf degree threshold.
numa accuracy rate high threshold High pf accuracy rate threshold.
numa accuracy rate low threshold Low pf accuracy rate threshold.
numa hbm lat high threshold TBE latency threshold for HBM2 High BW Util.
numa hbm lat medium threshold TBE latency threshold for HBM2 Medium BW Util.
numa ddr lat high threshold TBE latency threshold for DDR5 High BW Util.
numa ddr lat medium threshold TBE latency threshold for DDR5 Medium BW Util.

Table A.7.: Inherited Parameters from Queued Class for Prefetchers

105

A. Appendix Chapter

A.3. HPC Machine Details

Table A.8.: Detailed hardware specifications of the Juawei and HAICGU systems.
System Hardware Specifications

Juawei Hi1616
Node

• CPU: 2x HiSilicon Hi1616 (32x 2.4 GHz Cortex-A72 Cores)

• Memory: 256GB (16x16GB) DDR4-2133

• OS: CentOS 7.6.1810 (AltArch)

Juawei Haswell
Node

• CPU: 2x Intel Xeon E5-2660 v3 (10x 2.6 GHz Haswell Cores, 3.3
GHz Boost)

• Memory: 128GB (8x16GB) DDR4-2133

• OS: CentOS 7.6.1810

HAICGU
Cluster-

Standard
Compute Node

• Model: TaiShan 200, Model 2280

• CPU: 2x Kunpeng 920 processor (64 cores; 2.6GHz)

• Memory: 224GB (16x 8GB DDR4)

• OS: Rocky Linux 8

• Network: 1x 100Gbit/s EDR Infiniband HCA

HAICGU
Cluster-

Development
Compute Node

• Model: TaiShan 200, Model 2280

• CPU: 2x Kunpeng 920 processor (64 cores; 2.6GHz)

• Memory: 128GB (16x 8GB DDR4)

• OS: Rocky Linux 8

• Network: 1x 100Gbit/s EDR Infiniband HCA

• Storage: 2 x 960GB SSD SATA 6Gb/s

HAICGU
Cluster-IO Node

• Metadata storage: 2x 960GB SSD RAID 1

• Object v: 32x 1.2 TB HDD RAID 10)

• Mgmt. storage: 4x 1.2 TB HDD SAS 12Gb/s; 10.000rpm (RAID 10)

106

A.4. Barcelona Supercomputing Center - Sparse Matrix-Vector Multiplication

System Hardware Specifications

HAICGU
Cluster-AI

Training Node

• Model: Atlas 800, Model 9000

• CPU: 4x Kunpeng 920 processor (ARMv8 AArch64)

• Memory: 1024GB (32x 32GB DDR4 2933MHz RDIMM)

• OS: Rocky Linux 8

• Neural Processing Unit (NPU): 8x Huawei Ascend 910 with 32 AI
cores and 32GB HBM2 memory

• Local storage: 2x 960 GB SSD SATA 6Gb/s

• Data storage: 4x 3.2TB SSD NVMe

HAICGU
Cluster-AI

Inference Node

• Model: Atlas 800, Model 3000

• CPU: 2x Kunpeng 920 processor (ARMv8 AArch64)

• Memory: 512GB (16x 32GB DDR4 2933 MHz RDIMM)

• OS: Rocky Linux 8

• Local storage: 2x 960GB SSD SATA 6Gb/s

• Data storage: 4 x 960GB SSD SATA 6Gb/s

• GPU: 5x Atlas 300 AI Inference Card; 32GB; PCIe3.0 x16

A.4. Barcelona Supercomputing Center - Sparse
Matrix-Vector Multiplication

Similar to MINIFE SpMV this operation multiplies a sparse matrix by a dense vector
to produce another dense vector, using the CSR (Compressed Sparse Row) format.
This version of SpMV optimized across NUMA nodes, and the impact of prefetching
techniques, are highly dependent on the underlying matrix patterns [32]. However,
we observed low bandwidth utilization across the numa domains, which is the reason
why we further implemented the MINIFE SpMV to the NUMA version. Subsequently,
the description of the SpMV from Barcelona Supercomputing Center is going to be
explained.

107

A. Appendix Chapter

The CSR format is engineered to optimize storage by solely retaining non-zero matrix
elements and their corresponding column indices. It comprises three fundamental
components:

• Array of Non-Zero Values: This component stores all non-zero matrix elements in
a row-major order.

• Column Indices (col idxs): Working in conjunction with nnz, this array holds
the column indices of the non-zero elements.

• Row Pointers (row ptrs): It includes indices that mark the start of each row within
the nnz vals array, enabling swift access to rows.

The direct row access capability and compact storage of the CSR format significantly
enhance the efficiency of SpMV operations. Moreover, its alignment with vectorized
operations further boosts performance on contemporary hardware architectures.

Optimizing SpMV for NUMA systems is vital to enhance performance in multi-processor
environments, where memory access latency varies based on the memory location. This
optimization involves strategically distributing the sparse matrix and vector data across
different NUMA nodes to reduce cross-node memory accesses and evenly distribute
computational load among processors. In the architecture under consideration, the
heterogeneity of the implemented memory presents a particularly intriguing aspect.
Utilizing the HBM2 node for matrix operations alongside a DDR5 memory node for
dense vector processing could enhance system performance. This is primarily due to
the significant number of read operations; the HBM’s superior bandwidth is expected to
minimize latency, thereby improving data throughput. Exploring the outcomes across
all four possible configurations of HBM2 and DDR5 Node associations presents an
intriguing aspect.

The efficacy of prefetching in SpMV computations is contingent upon the matrix’s
inherent patterns:

• Stride Access Pattern: Matrices exhibiting a stride access pattern, characterized
by regularly spaced non-zero elements, can significantly leverage prefetching
techniques. This optimization preemptively loads anticipated elements into the
cache, thereby reducing memory access latency and enhancing computational
throughput, as illustrated in Figure A.1a.

• Spatial Locality Access Pattern: For matrices demonstrating a spatial locality
access pattern, where non-zero elements are closely clustered, prefetching is
particularly beneficial. It allows for concurrent access to adjacent memory
locations, effectively minimizing cache miss rates and optimizing data retrieval
processes, as depicted in Figure A.1b.

108

A.4. Barcelona Supercomputing Center - Sparse Matrix-Vector Multiplication

(a) Stride Access Pattern (b) Spatial Locality Access Pattern

(c) Temporal Locality Access Pattern (d) Uniform Distribution Pattern

Figure A.1.: Access Patterns in Sparse Matrix-Vector Multiplication (SpMV)

109

A. Appendix Chapter

• Temporal Locality Access Pattern: In cases where matrices display a temporal
locality access pattern, with frequent re-accesses to certain elements, the efficacy
of prefetching may be limited due to the high probability of these elements being
retained in the cache from prior accesses. This characteristic is highlighted in
Figure A.1c.

• Uniform Distribution Pattern: Matrices with a uniform distribution of non-zero
elements may experience modest improvements in performance through prefetching.
This technique facilitates the anticipatory loading of data likely to be required in
the near future, although the gains may not be as substantial as those observed in
matrices with more defined access patterns, as shown in Figure A.1d.

To determine the required size for the given problem, it is essential to analyze the memory
requirements. The CSR format is characterized by the use of three distinct arrays. An
array containing the non-zero elements of the matrix, an array for the column indices
of these non-zero elements, and an array for the row pointers. The size of the non-zero
elements array is computed as the product of 𝑛𝑛𝑧 (the number of non-zero elements per
row) and 𝑁 (the dimension of the square matrix), with the column indices array mirroring
the size of the non-zero elements array. The row pointers array extends one element
beyond the matrix dimension, totaling 𝑁 + 1 elements. Thus, the memory footprint for a
CSR matrix is formulated as (𝑛𝑛𝑧 × 𝑁 × 2 + 𝑁 + 1) × 𝐷Bytes, where 𝐷Bytes signifies the
size of each data element in Bytes. Contrarily, the memory requisites for both the input
and output dense vectors are 𝑁 × 𝐷Bytes each.

Referencing the work by Sgherzi et al. [32], the overall memory requirement integrates
the CSR matrix and both vectors, calculated as follows:

(nnz × 𝑁 × 2 + 𝑁 + 1 + 2𝑁) × 𝐷Bytes = (nnz × 𝑁 × 2 + 3𝑁 + 1) × 𝐷Bytes.

This equation indicates that the matrix size is influenced by the values of nnz and 𝑁 .
Setting nnz = 16 establishes the basis for the simulation parameters.

Given a system configuration with 𝑁core = 20 cores and an SLC size of 𝑆𝐿𝐶size = 2
MiB per core, with data elements sized at 𝐷Bytes = 4 Bytes, the equation to ascertain the
problem size can be delineated as:

20 × 2 × 1024 × 1024 Bytes < (16 × 𝑁 × 2 + 𝑁 × 3 + 1) × 4 Bytes,
⇒ 10 × 1024 × 1024 < 35 × 𝑁 + 1,

⇒ 𝑁 >
10 × 1024 × 1024 − 1

35
⇒ 𝑁 ≈ 299593.1143.

110

A.4. Barcelona Supercomputing Center - Sparse Matrix-Vector Multiplication

Following the calculation, with nnz set to 16, the matrix dimension 𝑁 is approximated to
299594 for simulation purposes. During the execution of benchmarks, it was observed
that the process stalled while reading matrices, rendering it impossible to evaluate within
the Gem5 Simulation framework. To address compatibility issues, modifications were
made to the codebase to ensure compliance with the compiler version supported by the
QEMU image, which is utilized for FS mode simulation. While these adjustments are
executed successfully on hardware, challenges persist in executing the modified code in
FS mode simulation. This discrepancy warrants further investigation.

111

List of Figures

2.1. Von Neumann Architecture: 1) Processor - Executes instructions and
processes data. 2) Arithmetic Unit - Performs mathematical operations.
3) Control Unit - Manages the execution of instructions. 4) Main Memory
- Stores data and instructions for quick access. 5) Input/Output Interface -
Communication with external devices like keyboards, mice, and monitors.
Adapted from [35]. 6

2.2. The figure represents Moore’s Law, where the number of transistors
on a chip doubles every two years, significantly enhancing computa-
tional power. However, memory performance lacks behind this rapid
growth, resulting in a visible gap between transistor density and memory
advancement. Adapted from [13]. 7

2.3. Illustration of the Memory Hierarchy: Starting from lower-level devices
with higher capacity, lower cost, and higher latency, the hierarchy ascends
to more expansive, quicker latency, and smaller storage memory levels.
Adapted from [35]. 8

2.4. Illustration of the cache hierarchy. Higher levels have lower latency
but smaller storage capacity. The LLC is shared with other cores. L1I
marks the level one instruction cache and L1D the level one data cache.
Adapted from [16]. 10

2.5. Illustration of Prefetching Timeliness: The left Figure shows a late
prefetch, resulting in a cache miss due to the prefetch request occurring
too close to the data load instruction. The right Figure demonstrates
a timely prefetch where the data arrives in the cache just before the
workload requires it, effectively preventing a cache miss and enhancing
system performance. 14

3.1. Detailed architecture of the Arm Neoverse V1 Core [37], showcasing
the enhanced front-end with improved branch prediction, the execution
engine with expanded ReOrder Buffer and SVE units, and the advanced
memory subsystem with optimized cache sizes for high-performance
computing. 21

113

List of Figures

3.2. One Quadrant of the Simulated CPU with Arm CoreLink CMN-650
Configuration: Illustrates the allocation of 16 Neoverse V1 cores to
8 HBM2 channels (blue) and 4 cores to 1 DDR5 channels (orange
routers). The red router serves as a fail-safe, and the purple router enables
inter-quadrant connections. 23

3.3. Areas highlighted in blue represent the stages where optimizations are
applied, illustrating the key points of enhancement in the prefetching
mechanism. 24

3.4. Visualization of the dynamic window-based prefetching algorithm with
three distinct zones. The first zone, highlighted in blue, represents the
monitoring window itself, where the span between entry.windowStart
and entry.windowEnd matches the lookahead. The second and third
zones, shown in gray and red respectively, correspond to addresses beyond
entry.windowEnd and addresses below entry.windowStart. Figure
3.4 illustrates the three prefetch trigger scenarios: Trigger 1 identifies
addresses below the Monitoring Region and ending the process; Trigger 2
and Trigger 3 involve addresses within or just beyond the window, leading
to adjustments in the monitoring window based on whether the address
is before or after entry.lastAddr, respectively. This ensures prefetch
efficiency by continuing from entry.lastAddr, thereby maintaining
prefetch sequence integrity and minimizing redundant prefetches. Figure
3.4b shows the updating process of the Monitoring Region for valid
prefetches within page boundaries, and adjusting entry.windowStart
when lookahead < entry.windowEnd−entry.windowStart. 30

3.5. Activity Diagram of the PC-based Stride Prefetching Process: Areas
highlighted in blue represent the stages where optimizations are applied,
illustrating the key points of enhancement in the prefetching mechanism. 32

3.6. Comparative latency measurement model for HBM and DDR Memory
Devices. The left side of the figure illustrates the latency curve for the
HBM memory device, while the right side depicts the DDR memory
device. In both plots, the blue curves represent the actual TBE latency
observed during the simulation. The yellow curves indicate the values
calculated by the average latency model. The red range arrows are used
to mark the thresholds for low, medium, and high bandwidth utilization,
based on the identified saturation points in the latency curves. 38

114

List of Figures

3.7. Illustrative overview of dual prefetching optimization strategies: The
upper portion of this figure illustrates the learning phase, capturing the
trigger data collection. The lower segment demonstrates the looka-
head optimization methodology, elucidating the adaptive modulation
of prefetch triggers in reaction to cache event patterns, as explicated in
Section 3.6. The illustration also comprehensively portrays the degree
optimization strategy at its base, correlating it with fluctuating bandwidth
utilization and accuracy metrics, as detailed in Section 3.6. 41

3.8. Activity diagram of the notifyFill function, illustrating its role in
handling prefetch-related events triggered by the cache controller. The
diagram showcases the process of address verification, queue entry
creation, and updating the fill-done queue based on incoming prefetch
requests or cache fills. This function efficiently manages prefetch-related
events within the cache system. 42

3.9. Activity diagram of the notifyLate function, illustrating the handling of
late prefetch requests. The diagram emphasizes the steps of address re-
trieval, table entry verification, fdQueue examination, and the calculation
of lookahead values for voting. This process is critical for optimizing
prefetch triggers in scenarios where prefetch requests arrive later than
expected, potentially causing cache misses. 44

3.10. Activity diagram of the notifyTimely function, illustrating the process of
handling timely prefetch requests. The diagram highlights key steps such
as address retrieval, table entry verification, fill-done queue examination,
and the calculation of lookahead values for the voting mechanism. This
mechanism is critical for adjusting prefetch distances based on prefetch
request timing. 45

4.1. Script Generation Command . 49

4.2. Pseudocode illustrating the modifications required to adapt benchmarks
for Gem5 simulation. 50

4.3. STREAM Triad Kernel Operation . 50

4.4. Simplified SpMV Kernel Operation in MiniFE2 52

115

List of Figures

4.5. Performance comparison of prefetching strategies for the Simple Triad
benchmark on an HBM2 node with 1 thread. Execution times for the
Stream-based (Str), Aggressive (Agg), and Timely Aware Stride (TiA)
Prefetchers are shown alongside the no-prefetching baseline (NoP).
Notable findings include a 27.25% speedup with the best Stream-based
configuration and a closely matched 26.66% improvement by the Agg
Prefetcher with all advanced features enabled. These results highlight the
effectiveness of adaptive prefetching in reducing computation latency,
while being close to the optimal solution. 58

4.6. Epoch-based performance metrics analysis for the Agg Prefetcher and
the static configuration of the Stream-based Prefetcher during the Simple
Triad benchmark on an HBM2 node with 1 thread. Left 4.6a: Agg
Prefetcher with adjustable degree, distance, and voting enabled. Right
4.6b: Static configuration of the Stream-based Prefetcher. These Figures
compare the operational dynamics, bandwidth utilization, prefetching
accuracy, and coverage of dynamic versus static prefetching configu-
rations. The analysis underscores the adaptive advantage of the Agg
Prefetcher in optimizing prefetching parameters for enhanced benchmark
performance, demonstrating its superior ability to adjust to workload
demands and improve execution times compared to static prefetching
approaches. 59

4.7. Performance comparison of prefetching strategies for the Simple Triad
benchmark on an HBM2 node with 4 threads. Execution times for the
Stream-based (Str), Aggressive (Agg), and Timely Aware Stride (TiA)
Prefetchers are shown alongside the no-prefetching baseline (NoP). No-
table findings include the Stream-based Prefetcher achieving the highest
speedup of 30.87% with a configuration of degree 4 and distance 32.
the Aggressive Prefetcher, enabled with adjustable degree, distance, and
voting features, applying the mean of votes to the distance, surpasses other
configurations with a speedup of 26.25%, underscoring the effectiveness
of distance adjustment in multi-threaded environments. However, similar
configurations of the Agg Prefetcher, when applying the most voted
distance, closely match, with a speedup of 23.65%. 60

116

List of Figures

4.8. Performance comparison of prefetching strategies for the Simple Triad
benchmark on an HBM2 node with 8 threads. Execution times for
the Stream-based (Str), Aggressive (Agg), and Timely Aware Stride
(TiA) Prefetchers are shown alongside the no-prefetching baseline (NoP).
The Stream-based Prefetcher leads in optimality with a 19.6% speedup
in its static configuration with a degree of two and a distance of 32.
The Agg Prefetcher, with its distance adjustment disabled and voting
mechanism engaged, attains the second-best speedup of 18.68%, while
the TiA Prefetcher configurations, especially when employing degree and
distance adjustments with the most voted distance, exhibit performance on
par with the Agg Prefetcher under analogous conditions. Results suggest
that the mechanics of prefetch trigger learning and queue management
could benefit from a re-examination in conjunction with experimentation
across varied epoch lengths, which may unravel the nuances of these
adaptive strategies. 62

4.9. Epoch-based performance metrics analyses for the Agg Prefetcher and
TiA Prefetcher during the Simple Triad benchmark on an HBM2 node
with 8 thread. Left 4.9a: Agg Prefetcher with adjustable degree, distance,
and mean voting enabled. Right 4.9b: TiA Prefetcher with same features
enabled. These Figures compare the operational dynamics, bandwidth
utilization, prefetching accuracy, and coverage of dynamic versus static
prefetching configurations. The analysis underscores the impact of
adaptive strategies on prefetching efficiency, revealing the significant
performance disparity driven by the reliance to PC. 63

4.10. Performance comparison of prefetching strategies for the Simple Triad
benchmark on a DDR5 node with 1 thread. Execution times for the
Stream- based (Str), Aggressive (Agg), and Timely Aware Stride (TiA)
Prefetchers are shown alongside the no-prefetching baseline (NoP). A
performance degradation is observed when transitioning from HBM2
to DDR5 memory with a single thread in the Simple Triad benchmark.
This Figure demonstrates the impact of different Stream-based Prefetcher
configurations on DDR5 memory performance, highlighting a decrease of
−2.62% with the least effective static configuration and an improvement
of 5.55% with the most efficient configuration. The results underscore
the importance of optimal Prefetcher settings in mitigating the inherent
trade-offs between capacity and bandwidth in DDR5 memory systems. . 64

117

List of Figures

4.11. Performance comparison of prefetching strategies for the Simple Triad
benchmark on a DDR5 node with 4 threads. Execution times for the
Stream- based (Str), Aggressive (Agg), and Timely Aware Stride (TiA)
Prefetchers are shown alongside the no-prefetching baseline (NoP).
Increasing the thread count to four for DDR5 memory impacts the
performance. The Figure illustrates significant performance degradation
up to −33.23% with the least effective setup and minor performance
variations with other configurations. This analysis highlights the critical
role of prefetching strategies in managing additional stress on memory
systems induced by higher thread counts. 66

4.12. Comparative epoch-based analysis of prefetching in a 4-thread DDR5
setting underscores the TiA Prefetcher’s efficiency with limited prefetches,
positioned at the top left 4.12a. In contrast, the Agg and Stream-based
Prefetchers, shown at the bottom 4.12c and top right 4.12b respectively,
demonstrate similar accuracies yet differ in strategy. A lower prefetch
degree and greater distance for the Agg Prefetcher aim to approach page
boundaries closely, enhancing timeliness but not necessarily efficiency.
Both strategies exhibit alignment between total, useful, and demand
accesses but suffer from late deliveries in high spatial locality benchmarks,
impacting performance. 68

4.13. Performance comparison of prefetching strategies for the Simple Triad
benchmark on a DDR5 node with 8 threads. Execution times for the
Stream- based (Str), Aggressive (Agg), and Timely Aware Stride (TiA)
Prefetchers are shown alongside the no-prefetching baseline (NoP).
The evaluation of prefetching strategies in an 8-thread DDR5 memory
system configuration, indicating minimal performance benefits across
different prefetcher configurations. The TiA Prefetcher, maintaining its
configuration from the 4-thread scenario, shows a marginal speedup,
underscoring the challenges of prefetching effectiveness with increased
memory system demands. This Figure reflects the diminishing returns of
prefetching at higher thread counts. 69

118

List of Figures

4.14. Performance comparison of prefetching strategies for the SpMV bench-
mark on an HBM2 node with 1 thread. Execution times for the Stream-
based (Str), Aggressive (Agg), and Timely Aware Stride (TiA) Prefetchers
are shown alongside the no-prefetching baseline (NoP). The Stream-based
Prefetcher, with both prefetch degree and distance set to 32, achieves the
highest speedup of 45.42%, closely followed by the Agg Prefetcher with
a speedup of 44.73%. Employing a mean voting strategy for the Agg
Prefetcher results in a similar speedup of 44.70%. These results highlight
the effectiveness of various configurations for the Agg Prefetcher and the
advantage of Stream-based pattern detection, particularly in scenarios
with limited temporal locality. The least speedup of 17.21% with a static
configuration underscores the importance of adaptive strategy adjustments. 72

4.15. Epoch-based analysis comparing the Agg and TiA Prefetchers under
identical configurations with the degree adjustment deactivated and the
distance adjustment activated. The analysis showcases the side-by-
side performance of the Agg Prefetcher (left) and the TiA Prefetcher
(right), emphasizing their approaches to prefetching in a single-threaded
HBM2 memory simulation. Notably, the Agg Prefetcher demonstrates
a marginally superior coverage rate and a higher number of useful
prefetches, reflecting its efficiency in adapting to demand accesses with
a more variable distance setting. In contrast, the TiA Prefetcher exhibits
a fixed distance, attributed to the additional time spent on building
confidence due to temporal locality. This comparison reveals strategic
differences in prefetching behavior and their impact on performance,
underscoring the importance of optimal distance settings in achieving
higher speedups. 73

4.16. Performance comparison of prefetching strategies for the SpMV bench-
mark on an HBM2 node with 4 threads. Execution times for the
Stream-based (Str), Aggressive (Agg), and Timely Aware Stride (TiA)
Prefetchers are shown alongside the no-prefetching baseline (NoP). The
Agg Prefetcher, optimized with all available strategies and employing
the most favored distance, achieves a notable speedup of 59.84%, closely
rivaling the Str Prefetcher configured with a degree and distance of 32,
which leads to a speedup of 61.64%. This marginal difference of only
1.80% between the two demonstrates the effectiveness of optimization
strategies. 74

119

List of Figures

4.17. Performance comparison of prefetching strategies for the SpMV bench-
mark on an HBM2 node with 8 threads. Execution times for the
Stream-based (Str), Aggressive (Agg), and Timely Aware Stride (TiA)
Prefetchers are shown alongside the no-prefetching baseline (NoP). The
Stream-based Prefetcher, with a configuration of degree and distance
set to 32, achieves the highest speedup of 61.87%. In contrast, with
a configuration of degree and distance set to 2 yields only a 12.83%
speedup, indicating the critical role of Prefetcher configuration. The Agg
Prefetcher, fully optimized, secures the second-best performance with a
56.70% speedup, demonstrating the efficacy of optimization strategies. . 75

4.18. Performance comparison of prefetching strategies for the SpMV bench-
mark on a DDR5 node with 1 thread. Execution times for the Stream-based
(Str), Aggressive (Agg), and Timely Aware Stride (TiA) Prefetchers are
shown alongside the no-prefetching baseline (NoP). Results show the
performance of DDR5 is comparable to HBM2. Notably, the least
effective Stream-based Prefetcher configuration (distance and degree set
to two) yields a 12.84% speedup, while the optimal static configuration
(prefetch degree and distance set to 32) achieves a 41.38% speedup,
closely followed by the Agg Prefetcher at 40.16%. These results under-
line the effectiveness of optimization strategies under conditions of low
memory pressure, highlighting that DDR5, similar to HBM2, benefits
from prefetching and optimization strategies depending on the workload. 77

4.19. Performance comparison of prefetching strategies for the SpMV bench-
mark on a DDR5 node with 4 threads. Execution times for the Stream-
based (Str), Aggressive (Agg), and Timely Aware Stride (TiA) Prefetchers
are shown alongside the no-prefetching baseline (NoP). Raising the thread
count to four on DDR5 systems amplifies demand requests, placing greater
stress on the memory system. However, this adjustment yields a signifi-
cant speedup, achieving an increase of up to 25.77%. This performance
boost is provided by the static configuring the Stream-based Prefetcher
with a degree of four and a distance of 16. The lowest observed speedup
is 8.91%, with degree and distance set to two, highlighting the impor-
tance of optimal prefetch settings. The Aggressive (Agg) Prefetcher
closely follows with a speedup of 21.67%, underlining the effectiveness
of tailored optimization strategies for DDR5 under increased workloads. 78

120

List of Figures

4.20. Performance comparison of prefetching strategies for the SpMV bench-
mark on a DDR5 node with 8 threads. Execution times for the Stream-
based (Str), Aggressive (Agg), and Timely Aware Stride (TiA) Prefetchers
are shown alongside the no-prefetching baseline (NoP). Increasing the
thread count to eight on DDR5 systems results in a performance degrada-
tion of up to −15.39%, underscoring the challenges of handling increased
demand accesses and the consequential memory latencies. This condition
is exacerbated when the Stream-based Prefetcher is configured with a
high degree and distance of 32, leading to further memory contention.
Conversely, optimal configurations, such as a degree and distance of
two for the Stream-based Prefetcher, demonstrate a speedup of 10.35%,
suggesting the critical role of prefetcher parameter tuning in high con-
tention scenarios. The performance of the Agg and TiA Prefetchers,
under various settings, illustrates the direct impact of prefetch strategies
on controlling memory bandwidth and latency, with the adaptability of
the TiA Prefetcher pointing towards the need for further refinement in
prefetching mechanisms. 79

A.1. Access Patterns in Sparse Matrix-Vector Multiplication (SpMV) 109

121

List of Tables

3.1. Description of Parameters in the Prefetcher Entry 27
3.2. States of the Stream-based Prefetcher 27
3.3. Key Parameters and Initial Values in PC-based Stride Prefetcher 33
3.4. Degree Adjustment w.r.t. Accuracy Rate and Bandwidth Utilization Level 40

4.1. This table presents the simulation outcomes for the Simple Triad bench-
mark, comparing the efficiency of various NUMA memory allocation
strategies. Here, HBM2 and DDR5 are encoded as 0 and 1, respectively.
The column “DDR5 (NoP)” illustrates the speedup introduced by al-
locating vectors on DDR5 against HBM2 (0, 0, 0). Furthermore, the
columns labeled “Agg” and “TiA”, associated with the corresponding
Prefetcher, provide detailed insights into the performance variations,
both improvements and declines, relative to the NoP baseline across
different NUMA memory allocations. Here, “all” signifies the activation
of prefetching on both DDR and HBM memories, while the remaining
categories specify the devices on which prefetching is enabled. 82

4.2. This table presents the simulation outcomes for the Simple Triad bench-
mark, comparing the effectiveness of different NUMA memory allocation
strategies while highlighting the impact of doubling the DDR5 channels
from one to two. Here, HBM2 and DDR5 are encoded as 0 and 1,
respectively. The column “DDR5 (NoP)” illustrates the Speedup intro-
duced by allocating vectors on DDR5 memory against HBM2 (0, 0, 0).
Furthermore, the columns labeled “Agg” and “TiA”, associated with the
corresponding Prefetcher, provide detailed insights into the performance
variations, both improvements and declines, relative to the NoP baseline
across different NUMA memory allocations. Here, “all” signifies the
activation of prefetching on both DDR and HBM memories. 84

A.1. Parameters of the Arm CPU used in the Simulation 101
A.2. Specifications of HBM2 and DDR5 Memory Technologies [15] 102
A.3. StreamPrefetcher Parameters . 103
A.4. AggressivePrefetcher Parameters . 104

123

List of Tables

A.5. Stride Prefetcher Parameters . 104
A.6. TiAStride Prefetcher Parameters . 105
A.7. Inherited Parameters from Queued Class for Prefetchers 105
A.8. Detailed hardware specifications of the Juawei and HAICGU systems. . 106

124

List of Abbreviations and Acronyms

Abbreviation Meaning
Agg Prefetcher Aggressive Prefetcher
ALU Arithmetic Logic Unit
AMPM Access Map Pattern Matching
Arm Advanced RISC Machines
CPU Central Processing Unit
DDR5 Double Data Rate 5
ECC Error Checking and Correction
FS Mode Full System Mode
fdQueue fill done queue
FPU Floating-Point Unit
H High
HBM2 High-Bandwidth Memory 2
HPC High Performance Computing
IMP Indirect Memory Prefetcher
IP Instruction Pointer
ISA Instruction Set Architecture
I/O Input/Output
IPC Instructions Per Cycle
KNL Knight’s Landing
L Low
L1 Cache level one Cache
L2 Cache level two Cache
L3 Cache level three Cache
LLC Last Level Cache
LRU Least Recently Used
M Medium
MOP Macro-Operation
NoC Network on Chip
NoP No Prefetching
NUMA Non-Uniform Memory Access

125

List of Tables

Abbreviation Meaning
OS Operating System
PC Program Counter
RAM Random Access Memory
RISC Reduced Instruction Set Computing
ROB ReOrder Buffer
SECDED Single-bit Error-Correction, Double -bit Error Detection
SE Mode System Emulation Mode
SELL Sliced ELLPACK
SLC System Level Cache
SNC Sub-NUMA Clustering
SpMV Sparse Matrix-Vector Multiplication
SSD Solid-State Drive
SVE Scalable Vector Extension
TBE Translation Buffer Entries
TLB Translation Lookaside Buffer
TiA Prefetcher Timely Aware Stride Prefetcher
𝜇OP Micro-Operation
w.r.t. with respect to

126

Bibliography

[1] Arm. Arm® Neoverse™ V1 Core - Technical Reference Manual. Ac-
cessed: 02.01.2024. Arm. 2021. url: https : / / developer . arm . com /
documentation/101427/0101?lang=en.

[2] M. N. Asghar. “A review of ARM processor architecture history, progress and
applications”. In: Journal of Applied and Emerging Sciences 10.2 (2020), pp–171.

[3] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan. “Classifying memory
access patterns for prefetching”. In: Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems. 2020, pp. 513–526.

[4] D. N. H. Berk Saglam and C. Falquez. EPI-GEM5-PF: NUMA-Aware Branch.
Branch: epi-gem5-pf-numa-aware. 2024. url: https://gitlab.jsc.fz-
juelich.de/arm-jsc-projects/epi-gem5-pf.git.

[5] D. N. H. Berk Saglam and C. Falquez. gem5-arm-prefetcher. Branch: epi-numa-
aware-pf. 2024. url: https://gitlab.jsc.fz-juelich.de/arm-jsc-
projects/gem5-arm-prefetcher/-/tree/epi-numa-aware-pf.

[6] J. L. Bez, E. Bernart, F. Santos, L. Schnorr, and P. Navaux. “Performance and
energy efficiency analysis of HPC physics simulation applications in a cluster of
ARM processors”. In: Concurrency and Computation: Practice and Experience
29.21 (2017), e4014. url: https://dx.doi.org/10.1002/cpe.4014.

[7] D. F. Boes. Side Channel Attacks. Accessed: 05.12.2023. University of Bonn. 2023.
url: https://ecampus.uni-bonn.de/ilias.php?ref_id=2282548&
cmd=frameset&cmdClass=ilrepositorygui&cmdNode=yn&baseClass=

ilRepositoryGUI.
[8] E. Calore, A. Gabbana, S. Schifano, and R. Tripiccione. “ThunderX2 Performance

and Energy-Efficiency for HPC Workloads”. In: Computation 8.1 (2020), p. 20.
url: https://dx.doi.org/10.3390/computation8010020.

[9] S. Chandrasekaran, M. Si, J. Zhai, and L. Oden. “Special issue on new trends in
high-performance computing: Software systems and applications”. In: Software:
Practice and Experience 52.10 (2022), n/a. url: https://dx.doi.org/10.
1002/spe.3155.

[10] CHI Protocol Fundamentals. https://developer.arm.com/documentation/
102407/0100/CHI-protocol-fundamentals. Accessed: 01.05.2024. 2023.

127

https://developer.arm.com/documentation/101427/0101?lang=en
https://developer.arm.com/documentation/101427/0101?lang=en
https://gitlab.jsc.fz-juelich.de/arm-jsc-projects/epi-gem5-pf.git
https://gitlab.jsc.fz-juelich.de/arm-jsc-projects/epi-gem5-pf.git
https://gitlab.jsc.fz-juelich.de/arm-jsc-projects/gem5-arm-prefetcher/-/tree/epi-numa-aware-pf
https://gitlab.jsc.fz-juelich.de/arm-jsc-projects/gem5-arm-prefetcher/-/tree/epi-numa-aware-pf
https://dx.doi.org/10.1002/cpe.4014
https://ecampus.uni-bonn.de/ilias.php?ref_id=2282548&cmd=frameset&cmdClass=ilrepositorygui&cmdNode=yn&baseClass=ilRepositoryGUI
https://ecampus.uni-bonn.de/ilias.php?ref_id=2282548&cmd=frameset&cmdClass=ilrepositorygui&cmdNode=yn&baseClass=ilRepositoryGUI
https://ecampus.uni-bonn.de/ilias.php?ref_id=2282548&cmd=frameset&cmdClass=ilrepositorygui&cmdNode=yn&baseClass=ilRepositoryGUI
https://dx.doi.org/10.3390/computation8010020
https://dx.doi.org/10.1002/spe.3155
https://dx.doi.org/10.1002/spe.3155
https://developer.arm.com/documentation/102407/0100/CHI-protocol-fundamentals
https://developer.arm.com/documentation/102407/0100/CHI-protocol-fundamentals

Bibliography

[11] P. S. Crozier, H. K. Thornquist, R. W. Numrich, A. B. Williams, H. C. Edwards, E. R.
Keiter, M. Rajan, J. M. Willenbring, D. W. Doerfler, and M. A. Heroux. Improving
performance via mini-applications. Tech. rep. Sandia National Laboratories (SNL),
Albuquerque, NM, and Livermore, CA . . ., 2009.

[12] H. Devarajan, A. Kougkas, and X.-H. Sun. “Hfetch: Hierarchical data prefetching
for scientific workflows in multi-tiered storage environments”. In: 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). IEEE.
2020, pp. 62–72.

[13] D. Efnusheva, A. Cholakoska, and A. Tentov. “A survey of different approaches
for overcoming the processor-memory bottleneck”. In: International Journal of
Computer Science and Information Technology 9.2 (2017), pp. 151–163.

[14] R. Eigenmann and D. J. Lilja. “Von neumann computers”. In: Wiley Encyclopedia
of Electrical and Electronics Engineering 23 (1998), pp. 387–400.

[15] C. Falquez. EPI-gem5. https://gitlab.jsc.fz-juelich.de/arm-jsc-
projects/epi-gem5-pf/-/tree/epi-gem5-pf-numa-aware. Accessed:
29.12.2023. 2023.

[16] B. Falsafi and T. F. Wenisch. A primer on hardware prefetching. Springer Nature,
2022.

[17] M. Grannaes, M. Jahre, and L. Natvig. “Multi-level hardware prefetching using
low complexity delta correlating prediction tables with partial matching”. In:
International Conference on High-Performance Embedded Architectures and
Compilers. Springer. 2010, pp. 247–261.

[18] W. Heirman, I. Hur, U. Echeruo, S. Eyerman, and K. Du Bois. Apparatus, method,
and system for enhanced data prefetching based on non-uniform memory access
(NUMA) characteristics. US Patent 10,621,099. Apr. 2020.

[19] Y. Ishii, M. Inaba, and K. Hiraki. “Access map pattern matching for high perfor-
mance data cache prefetch”. In: Journal of Instruction-Level Parallelism 13.2011
(2011), pp. 1–24.

[20] S. Jamilan, T. A. Khan, G. Ayers, B. Kasikci, and H. Litz. “Apt-get: Profile-
guided timely software prefetching”. In: Proceedings of the Seventeenth European
Conference on Computer Systems. 2022, pp. 747–764.

[21] D. Joseph and D. Grunwald. “Prefetching using Markov predictors-25th An-
niversary Retrospective”. In: Symposium on Microarchitecture. 1995, pp. 231–
236.

[22] J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and Z. Chishti.
“Path confidence based lookahead prefetching”. In: 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE. 2016, pp. 1–12.

128

https://gitlab.jsc.fz-juelich.de/arm-jsc-projects/epi-gem5-pf/-/tree/epi-gem5-pf-numa-aware
https://gitlab.jsc.fz-juelich.de/arm-jsc-projects/epi-gem5-pf/-/tree/epi-gem5-pf-numa-aware

Bibliography

[23] T. Koizumi, T. Nakamura, Y. Degawa, H. Irie, S. Sakai, and R. Shioya. “T-SKID:
predicting when to prefetch separately from address prediction”. In: 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE. 2022,
pp. 1389–1394.

[24] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. Andreozzi,
A. Armejach, N. Asmussen, S. Bharadwaj, G. Black, G. Bloom, B. R. Bruce,
D. R. Carvalho, J. Castrillón, L. Chen, N. Derumigny, S. Diestelhorst, W. Elsasser,
M. Fariborz, A. F. Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope, T. Grass,
B. Hanindhito, A. Hansson, S. Haria, A. Harris, T. Hayes, A. Herrera, M. Horsnell,
S. A. R. Jafri, R. Jagtap, H. Jang, R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth,
H. Khaleghzadeh, Y. Kodama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli,
T. Mück, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris, L. E. Olson, M. S. Orr,
B. Pham, P. Prieto, T. Reddy, A. Roelke, M. Samani, A. Sandberg, J. Setoain,
B. Shingarov, M. D. Sinclair, T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish,
I. Vougioukas, Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon, and É. F. Zulian.
“The gem5 Simulator: Version 20.0+”. In: CoRR abs/2007.03152 (2020). url:
https://arxiv.org/abs/2007.03152.

[25] S. Mittal. “A survey of recent prefetching techniques for processor caches”. In:
ACM Computing Surveys (CSUR) 49.2 (2016), pp. 1–35.

[26] A. Navarro-Torres, B. Panda, J. Alastruey-Benedé, P. Ibánez, V. Viñals-Yúfera,
and A. Ros. “Berti: an Accurate Local-Delta Data Prefetcher”. In: 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE. 2022,
pp. 975–991.

[27] N. Neves, P. Tomás, and N. Roma. “Compiler-assisted data streaming for regular
code structures”. In: IEEE Transactions on Computers 70.3 (2020), pp. 483–494.

[28] D. A. Patterson and J. L. Hennessy. Computer organization and design ARM
edition: the hardware software interface. Morgan kaufmann, 2016.

[29] D. K. Poulsen and P.-C. Y. P.-C. Yew. “Data prefetching and data forwarding in
shared memory multiprocessors”. In: 1994 Internatonal Conference on Parallel
Processing Vol. 2. Vol. 2. IEEE. 1994, pp. 280–280.

[30] A. R. Proaño. “Data Placement Strategies for Heterogeneous and Non-Volatile
Memories in High Performance Computing”. PhD thesis. Université de Bordeaux,
2021.

[31] N. Rajovic. “Enabling the use of embedded and mobile technologies for high-
performance computing”. PhD thesis. Universitat Politècnica de Catalunya, 2017.
url: https://dx.doi.org/10.5821/dissertation-2117-113680.

[32] F. Sgherzi, M. Siracusa, I. Fernandez, A. Armejach, and M. Moretó. “SpChar:
Characterizing the Sparse Puzzle via Decision Trees”. In: arXiv preprint
arXiv:2304.06944 (2023).

129

https://arxiv.org/abs/2007.03152
https://dx.doi.org/10.5821/dissertation-2117-113680

Bibliography

[33] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. “Feedback directed prefetching:
Improving the performance and bandwidth-efficiency of hardware prefetchers”.
In: 2007 IEEE 13th International Symposium on High Performance Computer
Architecture. IEEE. 2007, pp. 63–74.

[34] V. K. Sripathi and K. Raman. Optimizing Memory Bandwidth on Stream Triad.
Accessed: 2024-01-24. Intel. 2021. url: https://www.intel.com/content/
www / us / en / developer / articles / technical / optimizing - memory -

bandwidth-on-stream-triad.html.
[35] E. Suarez. HIGH PERFORMANCE COMPUTING (HPC). Accessed: 27.11.2023.

University of Bonn / FZJ-JSC. 2022. url: https://ecampus.uni-bonn.de/
goto_ecampus_crs_2798331.html.

[36] A. Vladimirov and R. Asai. “Clustering modes in Knights Landing processors:
Developer’s guide”. In: Colfax International (2016).

[37] WikiChip. Neoverse V1 - Microarchitectures - ARM. https://en.wikichip.
org/wiki/arm_holdings/microarchitectures/neoverse_v1. Accessed:
02.01.2024. 2021.

[38] X. Yu, C. J. Hughes, N. Satish, and S. Devadas. “IMP: Indirect memory prefetcher”.
In: Proceedings of the 48th International Symposium on Microarchitecture. 2015,
pp. 178–190.

[39] L. Zaourar, M. Benazouz, A. Mouhagir, F. Jebali, T. Sassolas, J.-C. Weill, C.
Falquez, N. Ho, D. Pleiter, A. Portero, et al. “Multilevel simulation-based co-
design of next generation HPC microprocessors”. In: 2021 International Workshop
on Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS). IEEE. 2021, pp. 18–29.

130

https://www.intel.com/content/www/us/en/developer/articles/technical/optimizing-memory-bandwidth-on-stream-triad.html
https://www.intel.com/content/www/us/en/developer/articles/technical/optimizing-memory-bandwidth-on-stream-triad.html
https://www.intel.com/content/www/us/en/developer/articles/technical/optimizing-memory-bandwidth-on-stream-triad.html
https://ecampus.uni-bonn.de/goto_ecampus_crs_2798331.html
https://ecampus.uni-bonn.de/goto_ecampus_crs_2798331.html
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/neoverse_v1
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/neoverse_v1

	Introduction
	Theoretical Fundamentals
	Memory System
	Basic Computer Architecture
	The Memory Wall
	Memory Hierarchy

	Prefetching
	Prefetching Techniques
	Prefetching Balance

	Evolution and Significance of Arm Architecture
	Gem5 Simulator
	SE (System Emulation) Mode
	FS (Full System) Mode

	Methodology and Implementation
	Methodology
	Gem5: Basic Prefetcher

	Simulated high performance Arm processor with Gem5
	Arm Neoverse V1 Core
	Hybrid memory configuration

	Implementation: Stream-based Prefetcher
	Implementation: PC-based Stride Prefetcher
	Prefetcher Statistics
	Prefetcher optimization

	Experimental Analysis and Evaluation
	Experimental Environment
	HPC Benchmarks
	Simple Triad
	MINIFE SpMV
	Simple Triad - NUMA Version

	Evaluation
	Simple Triad
	MINIFE SpMV
	Simple Triad - NUMA Version
	Resource Estimation

	Related Work
	Berti: an Accurate Local-Delta Data Prefetcher
	T-SKID: Predicting When to Prefetch Separately from Address Prediction
	Classifying Memory Access Patterns for Prefetching
	Feedback-Directed Prefetching
	Access Map Pattern Matching
	Clustering Modes in Knights Landing Processors

	Conclusions and Future Directions
	Appendix
	Appendix Chapter
	Hardware Configuration Parameters
	Prefetcher Configuration Parameters
	HPC Machine Details
	Barcelona Supercomputing Center - Sparse Matrix-Vector Multiplication

