001028957 001__ 1028957
001028957 005__ 20250203103159.0
001028957 0247_ $$2doi$$a10.1007/s40544-022-0715-5
001028957 0247_ $$2ISSN$$a2223-7690
001028957 0247_ $$2ISSN$$a2223-7704
001028957 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04897
001028957 0247_ $$2WOS$$aWOS:000908515300001
001028957 037__ $$aFZJ-2024-04897
001028957 082__ $$a540
001028957 1001_ $$0P:(DE-HGF)0$$aTada, Toshi$$b0
001028957 245__ $$aRubber-ice friction
001028957 260__ $$aHeidelberg$$bSpringer$$c2023
001028957 3367_ $$2DRIVER$$aarticle
001028957 3367_ $$2DataCite$$aOutput Types/Journal article
001028957 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721217106_1233
001028957 3367_ $$2BibTeX$$aARTICLE
001028957 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001028957 3367_ $$00$$2EndNote$$aJournal Article
001028957 520__ $$aWe study the friction when a rectangular tire tread rubber block is sliding on an ice surface at different temperatures ranging from −38 to −2 °C, and sliding speeds ranging from 3 µm/s to 1 cm/s. At low temperatures and low sliding speeds we propose that an important contribution to the friction force is due to slip between the ice surface and ice fragments attached to the rubber surface. At temperatures above −10 °C or for high enough sliding speeds, a thin premelted water film occurs on the ice surface and the contribution to the friction from shearing the area of real contact is small. In this case the dominant contribution to the friction force comes from viscoelastic deformations of the rubber by the ice asperities. We comment on the role of waxing on the friction between skis and snow (ice particles).
001028957 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001028957 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001028957 7001_ $$0P:(DE-HGF)0$$aKawasaki, Satoshi$$b1
001028957 7001_ $$0P:(DE-HGF)0$$aShimizu, Ryouske$$b2
001028957 7001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b3$$eCorresponding author$$ufzj
001028957 773__ $$0PERI:(DE-600)2787589-1$$a10.1007/s40544-022-0715-5$$gVol. 11, no. 8, p. 1534 - 1543$$n8$$p1534 - 1543$$tFriction$$v11$$x2223-7690$$y2023
001028957 8564_ $$uhttps://juser.fz-juelich.de/record/1028957/files/s40544-022-0715-5.pdf$$yOpenAccess
001028957 8564_ $$uhttps://juser.fz-juelich.de/record/1028957/files/s40544-022-0715-5.gif?subformat=icon$$xicon$$yOpenAccess
001028957 8564_ $$uhttps://juser.fz-juelich.de/record/1028957/files/s40544-022-0715-5.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001028957 8564_ $$uhttps://juser.fz-juelich.de/record/1028957/files/s40544-022-0715-5.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001028957 8564_ $$uhttps://juser.fz-juelich.de/record/1028957/files/s40544-022-0715-5.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001028957 909CO $$ooai:juser.fz-juelich.de:1028957$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001028957 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Sumitomo Rubber Industries, Ltd., Material Research & Development HQ. 2-1-1, Kobe, 651-0071, Japan$$b0
001028957 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Sumitomo Rubber Industries, Ltd., Material Research & Development HQ. 2-1-1, Kobe, 651-0071, Japan$$b1
001028957 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Sumitomo Rubber Industries, Ltd., Material Research & Development HQ. 2-1-1, Kobe, 651-0071, Japan$$b2
001028957 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b3$$kFZJ
001028957 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)130885$$a MultiscaleConsulting, Jülich, 52428, Germany$$b3
001028957 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001028957 9141_ $$y2024
001028957 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001028957 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001028957 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001028957 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRICTION : 2022$$d2023-10-26
001028957 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:11:40Z
001028957 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001028957 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:11:40Z
001028957 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001028957 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028957 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:11:40Z
001028957 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRICTION : 2022$$d2023-10-26
001028957 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001028957 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001028957 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001028957 980__ $$ajournal
001028957 980__ $$aVDB
001028957 980__ $$aUNRESTRICTED
001028957 980__ $$aI:(DE-Juel1)PGI-1-20110106
001028957 9801_ $$aFullTexts