001     1028957
005     20250203103159.0
024 7 _ |a 10.1007/s40544-022-0715-5
|2 doi
024 7 _ |a 2223-7690
|2 ISSN
024 7 _ |a 2223-7704
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-04897
|2 datacite_doi
024 7 _ |a WOS:000908515300001
|2 WOS
037 _ _ |a FZJ-2024-04897
082 _ _ |a 540
100 1 _ |a Tada, Toshi
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Rubber-ice friction
260 _ _ |a Heidelberg
|c 2023
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721217106_1233
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We study the friction when a rectangular tire tread rubber block is sliding on an ice surface at different temperatures ranging from −38 to −2 °C, and sliding speeds ranging from 3 µm/s to 1 cm/s. At low temperatures and low sliding speeds we propose that an important contribution to the friction force is due to slip between the ice surface and ice fragments attached to the rubber surface. At temperatures above −10 °C or for high enough sliding speeds, a thin premelted water film occurs on the ice surface and the contribution to the friction from shearing the area of real contact is small. In this case the dominant contribution to the friction force comes from viscoelastic deformations of the rubber by the ice asperities. We comment on the role of waxing on the friction between skis and snow (ice particles).
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kawasaki, Satoshi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Shimizu, Ryouske
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Persson, Bo
|0 P:(DE-Juel1)130885
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1007/s40544-022-0715-5
|g Vol. 11, no. 8, p. 1534 - 1543
|0 PERI:(DE-600)2787589-1
|n 8
|p 1534 - 1543
|t Friction
|v 11
|y 2023
|x 2223-7690
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1028957/files/s40544-022-0715-5.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1028957/files/s40544-022-0715-5.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1028957/files/s40544-022-0715-5.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1028957/files/s40544-022-0715-5.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1028957/files/s40544-022-0715-5.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1028957
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Sumitomo Rubber Industries, Ltd., Material Research & Development HQ. 2-1-1, Kobe, 651-0071, Japan
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Sumitomo Rubber Industries, Ltd., Material Research & Development HQ. 2-1-1, Kobe, 651-0071, Japan
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Sumitomo Rubber Industries, Ltd., Material Research & Development HQ. 2-1-1, Kobe, 651-0071, Japan
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130885
910 1 _ |a MultiscaleConsulting, Jülich, 52428, Germany
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)130885
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRICTION : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:11:40Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:11:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:11:40Z
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FRICTION : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21