Home > Publications database > Simulated brain networks reflecting progression of Parkinson's disease > print |
001 | 1028958 | ||
005 | 20250204113912.0 | ||
024 | 7 | _ | |a 10.1162/netn_a_00406 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2024-04898 |2 datacite_doi |
024 | 7 | _ | |a 39735513 |2 pmid |
024 | 7 | _ | |a WOS:001381061600015 |2 WOS |
037 | _ | _ | |a FZJ-2024-04898 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Jung, Kyesam |0 P:(DE-Juel1)178611 |b 0 |
245 | _ | _ | |a Simulated brain networks reflecting progression of Parkinson's disease |
260 | _ | _ | |a Cambridge, MA |c 2024 |b The MIT Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738563539_21857 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Neurodegenerative progression of Parkinson’s disease affects brain structure and function and, concomitantly, alters topological properties of brain networks. The network alteration accompanied with motor impairment and duration of the disease is not yet clearly demonstrated in the disease progression. In this study, we aim at resolving this problem with a modeling approach based on large-scale brain networks from cross-sectional MRI data. Optimizing whole-brain simulation models allows us to discover brain networks showing unexplored relationships with clinical variables. We observe that simulated brain networks exhibit significant differences between healthy controls (n=51) and patients with Parkinson’s disease (n=60) and strongly correlate with disease severity and disease duration of the patients. Moreover, the modeling results outperform the empirical brain networks in these clinical measures. Consequently, this study demonstrates that utilizing simulated brain networks provides an enhanced view on network alterations in the progression of motor impairment and potential biomarkers for clinical indices. |
536 | _ | _ | |a 5232 - Computational Principles (POF4-523) |0 G:(DE-HGF)POF4-5232 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a 5231 - Neuroscientific Foundations (POF4-523) |0 G:(DE-HGF)POF4-5231 |c POF4-523 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Eickhoff, Simon |0 P:(DE-Juel1)131678 |b 1 |
700 | 1 | _ | |a Caspers, Julian |0 P:(DE-Juel1)144344 |b 2 |
700 | 1 | _ | |a Popovych, Oleksandr |0 P:(DE-Juel1)131880 |b 3 |e Corresponding author |
773 | _ | _ | |a 10.1162/netn_a_00406 |g p. 1 - 31 |0 PERI:(DE-600)2900481-0 |n 4 |p 1400–1420 |t Network neuroscience |v 8 |y 2024 |x 2472-1751 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1028958/files/APC600554300.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1028958/files/APC600554300.gif?subformat=icon |x icon |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1028958/files/APC600554300.jpg?subformat=icon-1440 |x icon-1440 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1028958/files/APC600554300.jpg?subformat=icon-180 |x icon-180 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1028958/files/APC600554300.jpg?subformat=icon-640 |x icon-640 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1028958/files/Jung%20Kyesam%20manuscript_figures.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1028958/files/netn_a_00406.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1028958/files/Jung%20Kyesam%20manuscript_figures.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1028958/files/Jung%20Kyesam%20manuscript_figures.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1028958/files/Jung%20Kyesam%20manuscript_figures.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1028958/files/Jung%20Kyesam%20manuscript_figures.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1028958 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)178611 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 1 |6 P:(DE-Juel1)131678 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 2 |6 P:(DE-Juel1)144344 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131880 |
910 | 1 | _ | |a HHU Düsseldorf |0 I:(DE-HGF)0 |b 3 |6 P:(DE-Juel1)131880 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5232 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5231 |x 1 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-02-09T16:05:29Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-02-09T16:05:29Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-02-09T16:05:29Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NETW NEUROSCI : 2022 |d 2025-01-01 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-01 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-01 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-01 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-01 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-01 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-01 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|