001028966 001__ 1028966
001028966 005__ 20250204113912.0
001028966 0247_ $$2doi$$a10.1186/s12868-024-00876-x
001028966 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04902
001028966 0247_ $$2pmid$$a38926677
001028966 0247_ $$2WOS$$aWOS:001255395200001
001028966 037__ $$aFZJ-2024-04902
001028966 082__ $$a610
001028966 1001_ $$0P:(DE-HGF)0$$aOlschewski, Daniel Navin$$b0$$eCorresponding author
001028966 245__ $$aThe angiotensin II receptors type 1 and 2 modulate astrocytes and their crosstalk with microglia and neurons in an in vitro model of ischemic stroke
001028966 260__ $$aHeidelberg$$bSpringer$$c2024
001028966 3367_ $$2DRIVER$$aarticle
001028966 3367_ $$2DataCite$$aOutput Types/Journal article
001028966 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721204891_13815
001028966 3367_ $$2BibTeX$$aARTICLE
001028966 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001028966 3367_ $$00$$2EndNote$$aJournal Article
001028966 520__ $$aAbstractBackground Astrocytes are the most abundant cell type of the central nervous system and are fundamentallyinvolved in homeostasis, neuroprotection, and synaptic plasticity. This regulatory function of astrocytes on theirneighboring cells in the healthy brain is subject of current research. In the ischemic brain we assume disease specificdifferences in astrocytic acting. The renin–angiotensin–aldosterone system regulates arterial blood pressurethrough endothelial cells and perivascular musculature. Moreover, astrocytes express angiotensin II type 1 and 2receptors. However, their role in astrocytic function has not yet been fully elucidated. We hypothesized that the angiotensinII receptors impact astrocyte function as revealed in an in vitro system mimicking cerebral ischemia.Astrocytes derived from neonatal wistar rats were exposed to telmisartan (angiotensin II type 1 receptor-blocker)or PD123319 (angiotensin II type 2 receptor-blocker) under normal conditions (control) or deprivation from oxygenand glucose. Conditioned medium (CM) of astrocytes was harvested to elucidate astrocyte-mediated indirect effectson microglia and cortical neurons.Result The blockade of angiotensin II type 1 receptor by telmisartan increased the survival of astrocytes duringischemic conditions in vitro without affecting their proliferation rate or disturbing their expression of S100A10,a marker of activation. The inhibition of the angiotensin II type 2 receptor pathway by PD123319 resultedin both increased expression of S100A10 and proliferation rate. The CM of telmisartan-treated astrocytes reducedthe expression of pro-inflammatory mediators with simultaneous increase of anti-inflammatory markers in microglia.Increased neuronal activity was observed after treatment of neurons with CM of telmisartan- as well as PD123319-stimulated astrocytes.Conclusion Data show that angiotensin II receptors have functional relevance for astrocytes that differs in healthyand ischemic conditions and effects surrounding microglia and neuronal activity via secretory signals. Above that, this
001028966 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001028966 536__ $$0G:(GEPRIS)431549029$$aDFG project 431549029 - SFB 1451: Schlüsselmechanismen normaler und krankheitsbedingt gestörter motorischer Kontrolle (431549029)$$c431549029$$x1
001028966 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001028966 7001_ $$0P:(DE-HGF)0$$aNazarzadeh, Nilufar$$b1
001028966 7001_ $$0P:(DE-HGF)0$$aLange, Felix$$b2
001028966 7001_ $$0P:(DE-HGF)0$$aKoenig, Anna Maria$$b3
001028966 7001_ $$0P:(DE-HGF)0$$aKulka, Christina$$b4
001028966 7001_ $$0P:(DE-Juel1)169770$$aAbraham, Jella-Andrea$$b5
001028966 7001_ $$0P:(DE-Juel1)186027$$aBlaschke, Stefan Johannes$$b6$$ufzj
001028966 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b7$$ufzj
001028966 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b8$$ufzj
001028966 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b9$$ufzj
001028966 7001_ $$0P:(DE-HGF)0$$aSchroeter, Michael$$b10
001028966 7001_ $$0P:(DE-HGF)0$$aRueger, Maria Adele$$b11
001028966 7001_ $$0P:(DE-HGF)0$$aVay, Sabine Ulrike$$b12
001028966 773__ $$0PERI:(DE-600)2041344-0$$a10.1186/s12868-024-00876-x$$gVol. 25, no. 1, p. 29$$n1$$p29$$tBMC neuroscience$$v25$$x1471-2202$$y2024
001028966 8564_ $$uhttps://juser.fz-juelich.de/record/1028966/files/PDF.pdf$$yOpenAccess
001028966 8564_ $$uhttps://juser.fz-juelich.de/record/1028966/files/PDF.gif?subformat=icon$$xicon$$yOpenAccess
001028966 8564_ $$uhttps://juser.fz-juelich.de/record/1028966/files/PDF.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001028966 8564_ $$uhttps://juser.fz-juelich.de/record/1028966/files/PDF.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001028966 8564_ $$uhttps://juser.fz-juelich.de/record/1028966/files/PDF.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001028966 909CO $$ooai:juser.fz-juelich.de:1028966$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001028966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186027$$aForschungszentrum Jülich$$b6$$kFZJ
001028966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b7$$kFZJ
001028966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b8$$kFZJ
001028966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b9$$kFZJ
001028966 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001028966 9141_ $$y2024
001028966 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001028966 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
001028966 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
001028966 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
001028966 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
001028966 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028966 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
001028966 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC NEUROSCI : 2022$$d2024-12-18
001028966 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001028966 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001028966 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:34:50Z
001028966 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:34:50Z
001028966 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:34:50Z
001028966 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001028966 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001028966 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001028966 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
001028966 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001028966 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001028966 920__ $$lyes
001028966 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
001028966 980__ $$ajournal
001028966 980__ $$aVDB
001028966 980__ $$aUNRESTRICTED
001028966 980__ $$aI:(DE-Juel1)INM-3-20090406
001028966 9801_ $$aFullTexts