001     1028978
005     20250129092442.0
024 7 _ |a 10.48550/ARXIV.2310.10460
|2 doi
024 7 _ |a 10.34734/FZJ-2024-04910
|2 datacite_doi
037 _ _ |a FZJ-2024-04910
100 1 _ |a Bende, Ankit
|0 P:(DE-Juel1)184532
|b 0
|u fzj
111 2 _ |a 37th International Conference on VLSI Design 2024
|c Kolkata
|d 2024-01-06 - 2024-01-10
|w India
245 _ _ |a Experimental Validation of Memristor-Aided Logic Using 1T1R TaOx RRAM Crossbar Array
260 _ _ |c 2024
|b arXiv
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Proceedings
|b proc
|m proc
|0 PUB:(DE-HGF)26
|s 1737452760_23860
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Book
|2 DataCite
336 7 _ |a BOOK
|2 ORCID
336 7 _ |a Conference Proceedings
|0 3
|2 EndNote
336 7 _ |a PROCEEDINGS
|2 BibTeX
520 _ _ |a Memristor-aided logic (MAGIC) design style holds a high promise for realizing digital logic-in-memory functionality. The ability to implement a specific gate in a MAGIC design style hinges on the SET-to-RESET threshold ratio. The TaOx memristive devices exhibit distinct SET-to-RESET ratios, enabling the implementation of OR and NOT operations. As the adoption of the MAGIC design style gains momentum, it becomes crucial to understand the breakdown of energy consumption in the various phases of its operation. This paper presents experimental demonstrations of the OR and NOT gates on a 1T1R crossbar array. Additionally, it provides insights into the energy distribution for performing these operations at different stages. Through our experiments across different gates, we found that the energy consumption is dominated by initialization in the MAGIC design style. The energy split-up is 14.8%, 85%, and 0.2% for execution, initialization, and read operations respectively.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)
|0 G:(DE-82)BMBF-16ME0399
|c BMBF-16ME0399
|x 1
536 _ _ |a BMBF 16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)
|0 G:(DE-82)BMBF-16ME0398K
|c BMBF-16ME0398K
|x 2
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Emerging Technologies (cs.ET)
|2 Other
650 _ 7 |a FOS: Computer and information sciences
|2 Other
700 1 _ |a Singh, Simranjeet
|0 P:(DE-Juel1)197022
|b 1
|u fzj
700 1 _ |a Jha, Chandan Kumar
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kempen, Tim
|0 P:(DE-Juel1)176194
|b 3
|u fzj
700 1 _ |a Cüppers, Felix
|0 P:(DE-Juel1)173924
|b 4
|u fzj
700 1 _ |a Bengel, Christopher
|0 P:(DE-Juel1)188159
|b 5
700 1 _ |a Zambanini, Andre
|0 P:(DE-Juel1)145837
|b 6
|u fzj
700 1 _ |a Nielinger, Dennis
|0 P:(DE-Juel1)168167
|b 7
|u fzj
700 1 _ |a Patkar, Sachin
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Drechsler, Rolf
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 10
|u fzj
700 1 _ |a Merchant, Farhad
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Rana, Vikas
|0 P:(DE-Juel1)145504
|b 12
|u fzj
773 _ _ |a 10.48550/ARXIV.2310.10460
856 4 _ |u https://juser.fz-juelich.de/record/1028978/files/VDAT-2024.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028978/files/VLSID_2024_Arxiv.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028978/files/VDAT-2024.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028978/files/VDAT-2024.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028978/files/VDAT-2024.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028978/files/VDAT-2024.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028978/files/VLSID_2024_Arxiv.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028978/files/VLSID_2024_Arxiv.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028978/files/VLSID_2024_Arxiv.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1028978/files/VLSID_2024_Arxiv.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1028978
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184532
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)197022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176194
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)173924
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145837
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)168167
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)145504
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 2
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 3
980 1 _ |a FullTexts
980 _ _ |a proc
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21