001028979 001__ 1028979
001028979 005__ 20250204113913.0
001028979 0247_ $$2doi$$a10.1103/PhysRevB.109.144417
001028979 0247_ $$2ISSN$$a2469-9950
001028979 0247_ $$2ISSN$$a2469-9977
001028979 0247_ $$2ISSN$$a0163-1829
001028979 0247_ $$2ISSN$$a0556-2805
001028979 0247_ $$2ISSN$$a1095-3795
001028979 0247_ $$2ISSN$$a1098-0121
001028979 0247_ $$2ISSN$$a1538-4489
001028979 0247_ $$2ISSN$$a1550-235X
001028979 0247_ $$2ISSN$$a2469-9969
001028979 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-04911
001028979 0247_ $$2WOS$$aWOS:001229869700002
001028979 037__ $$aFZJ-2024-04911
001028979 082__ $$a530
001028979 1001_ $$0P:(DE-Juel1)188843$$aChen, Runze$$b0
001028979 245__ $$aDzyaloshinskii-Moriya interaction from unquenched orbital angular momentum
001028979 260__ $$aWoodbury, NY$$bInst.$$c2024
001028979 3367_ $$2DRIVER$$aarticle
001028979 3367_ $$2DataCite$$aOutput Types/Journal article
001028979 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721293264_20731
001028979 3367_ $$2BibTeX$$aARTICLE
001028979 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001028979 3367_ $$00$$2EndNote$$aJournal Article
001028979 520__ $$aOrbitronics is an emerging and fascinating field that explores the utilization of the orbital degree of freedom ofelectrons for information processing. An increasing number of orbital phenomena are being currently discovered, with spin-orbit coupling mediating the interplay between orbital and spin effects, thus providing a wealth of control mechanisms and device applications. In this context, the orbital analog of the spin Dzyaloshinskii-Moriya interaction (DMI), i.e., orbital DMI, deserves to be explored in depth since it is believed to be capable of inducing chiral orbital structures. Here, we unveil the main features and microscopic mechanisms of the orbital DMI in a two-dimensional square lattice using a tight-binding model of t2g orbitals in combination with the Berry phase theory. This approach allows us to investigate and transparently disentangle the role of inversion symmetry breaking, strength of orbital-exchange interaction, and spin-orbit coupling in shaping the properties of the orbital DMI. By scrutinizing the band-resolved contributions, we are able to understand the microscopic mechanisms and guiding principles behind the orbital DMI and its anisotropy in two-dimensional magnetic materials, and uncover a fundamental relation between the orbital DMI and its spin counterpart, which is currently being explored very intensively. The insights gained from our work contribute to advancing our knowledge of orbital-related effects and their potential applications in spintronics, providing a path for future research in the field of chiral orbitronics.
001028979 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001028979 536__ $$0G:(GEPRIS)437337265$$aDFG project 437337265 - Spin+AFM-Dynamik: Antiferromagnetismus durch Drehimpulsströme und Gitterdynamik (A11) (437337265)$$c437337265$$x1
001028979 536__ $$0G:(GEPRIS)444844585$$aDFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585)$$c444844585$$x2
001028979 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001028979 7001_ $$0P:(DE-Juel1)178993$$aGo, Dongwook$$b1$$ufzj
001028979 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2
001028979 7001_ $$0P:(DE-HGF)0$$aZhao, Weisheng$$b3$$eCorresponding author
001028979 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b4$$ufzj
001028979 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.109.144417$$gVol. 109, no. 14, p. 144417$$n14$$p144417$$tPhysical review / B$$v109$$x2469-9950$$y2024
001028979 8564_ $$uhttps://juser.fz-juelich.de/record/1028979/files/PhysRevB.109.144417.pdf$$yOpenAccess
001028979 8564_ $$uhttps://juser.fz-juelich.de/record/1028979/files/PhysRevB.109.144417.gif?subformat=icon$$xicon$$yOpenAccess
001028979 8564_ $$uhttps://juser.fz-juelich.de/record/1028979/files/PhysRevB.109.144417.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001028979 8564_ $$uhttps://juser.fz-juelich.de/record/1028979/files/PhysRevB.109.144417.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001028979 8564_ $$uhttps://juser.fz-juelich.de/record/1028979/files/PhysRevB.109.144417.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001028979 909CO $$ooai:juser.fz-juelich.de:1028979$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001028979 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)188843$$a Fert Beijing Institute, School of Integrated Circuit Science and Engineering, National Key Laboratory of Spintronics, Beihang University, Beijing 100191, China$$b0
001028979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b1$$kFZJ
001028979 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)178993$$a Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany$$b1
001028979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ
001028979 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Fert Beijing Institute, School of Integrated Circuit Science and Engineering, National Key Laboratory of Spintronics, Beihang University, Beijing 100191, China$$b3
001028979 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b4$$kFZJ
001028979 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)130848$$a Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany$$b4
001028979 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001028979 9141_ $$y2024
001028979 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001028979 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-10-27
001028979 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001028979 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001028979 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001028979 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001028979 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001028979 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001028979 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001028979 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001028979 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
001028979 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001028979 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2022$$d2024-12-10
001028979 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-10
001028979 920__ $$lyes
001028979 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001028979 980__ $$ajournal
001028979 980__ $$aVDB
001028979 980__ $$aUNRESTRICTED
001028979 980__ $$aI:(DE-Juel1)PGI-1-20110106
001028979 9801_ $$aFullTexts