001     1028979
005     20250204113913.0
024 7 _ |a 10.1103/PhysRevB.109.144417
|2 doi
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-04911
|2 datacite_doi
024 7 _ |a WOS:001229869700002
|2 WOS
037 _ _ |a FZJ-2024-04911
082 _ _ |a 530
100 1 _ |a Chen, Runze
|0 P:(DE-Juel1)188843
|b 0
245 _ _ |a Dzyaloshinskii-Moriya interaction from unquenched orbital angular momentum
260 _ _ |a Woodbury, NY
|c 2024
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721293264_20731
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Orbitronics is an emerging and fascinating field that explores the utilization of the orbital degree of freedom ofelectrons for information processing. An increasing number of orbital phenomena are being currently discovered, with spin-orbit coupling mediating the interplay between orbital and spin effects, thus providing a wealth of control mechanisms and device applications. In this context, the orbital analog of the spin Dzyaloshinskii-Moriya interaction (DMI), i.e., orbital DMI, deserves to be explored in depth since it is believed to be capable of inducing chiral orbital structures. Here, we unveil the main features and microscopic mechanisms of the orbital DMI in a two-dimensional square lattice using a tight-binding model of t2g orbitals in combination with the Berry phase theory. This approach allows us to investigate and transparently disentangle the role of inversion symmetry breaking, strength of orbital-exchange interaction, and spin-orbit coupling in shaping the properties of the orbital DMI. By scrutinizing the band-resolved contributions, we are able to understand the microscopic mechanisms and guiding principles behind the orbital DMI and its anisotropy in two-dimensional magnetic materials, and uncover a fundamental relation between the orbital DMI and its spin counterpart, which is currently being explored very intensively. The insights gained from our work contribute to advancing our knowledge of orbital-related effects and their potential applications in spintronics, providing a path for future research in the field of chiral orbitronics.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project 437337265 - Spin+AFM-Dynamik: Antiferromagnetismus durch Drehimpulsströme und Gitterdynamik (A11) (437337265)
|0 G:(GEPRIS)437337265
|c 437337265
|x 1
536 _ _ |a DFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585)
|0 G:(GEPRIS)444844585
|c 444844585
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Go, Dongwook
|0 P:(DE-Juel1)178993
|b 1
|u fzj
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 2
700 1 _ |a Zhao, Weisheng
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 4
|u fzj
773 _ _ |a 10.1103/PhysRevB.109.144417
|g Vol. 109, no. 14, p. 144417
|0 PERI:(DE-600)2844160-6
|n 14
|p 144417
|t Physical review / B
|v 109
|y 2024
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1028979/files/PhysRevB.109.144417.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1028979/files/PhysRevB.109.144417.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1028979/files/PhysRevB.109.144417.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1028979/files/PhysRevB.109.144417.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1028979/files/PhysRevB.109.144417.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1028979
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Fert Beijing Institute, School of Integrated Circuit Science and Engineering, National Key Laboratory of Spintronics, Beihang University, Beijing 100191, China
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)188843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178993
910 1 _ |a Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)178993
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130548
910 1 _ |a Fert Beijing Institute, School of Integrated Circuit Science and Engineering, National Key Laboratory of Spintronics, Beihang University, Beijing 100191, China
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130848
910 1 _ |a Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-10-27
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2022
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21