001     1028993
005     20240722202104.0
024 7 _ |a 10.34734/FZJ-2024-04917
|2 datacite_doi
037 _ _ |a FZJ-2024-04917
100 1 _ |a Pillath, Niclas
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Audio Deepfake Detection using the Stationary Wavelet Transform
|f - 2024-07-16
260 _ _ |c 2024
300 _ _ |a 76
336 7 _ |a Output Types/Supervised Student Publication
|2 DataCite
336 7 _ |a Thesis
|0 2
|2 EndNote
336 7 _ |a MASTERSTHESIS
|2 BibTeX
336 7 _ |a masterThesis
|2 DRIVER
336 7 _ |a Master Thesis
|b master
|m master
|0 PUB:(DE-HGF)19
|s 1721621603_28942
|2 PUB:(DE-HGF)
336 7 _ |a SUPERVISED_STUDENT_PUBLICATION
|2 ORCID
502 _ _ |a Masterarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, 2024
|c Rheinische Friedrich-Wilhelms-Universität Bonn
|b Masterarbeit
|d 2024
|o 2024-07-16
520 _ _ |a Recent advances in generative modelling have uncovered new avenues for creative expression, while also raising the potential of malicious misuse. Deepfakes pose significant risks to personal privacy, information integrity and cybersecurity. One possible countermeasure against deepfakes are robust detection models based on deep learning. In the context of audio, convolutional architectures have demonstrated good recognition rates. The raw audio data is usually transformed into a suitable format for convolutional neural networks. Current state-of-the art models employ Fourier or wavelet transforms. This thesis investigates the detection of audio fakes using deep convolutional networks that process stationary wavelet transform inputs. The results show functional detector models, but also reveal limitations of the stationary wavelet transform.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5122 - Future Computing & Big Data Systems (POF4-512)
|0 G:(DE-HGF)POF4-5122
|c POF4-512
|f POF IV
|x 1
700 1 _ |a Suarez, Estela
|0 P:(DE-Juel1)142361
|b 1
|e Reviewer
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1028993/files/Pillath_Master_UniBonn_2024.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1028993/files/Pillath_Master_UniBonn_2024.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1028993/files/Pillath_Master_UniBonn_2024.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1028993/files/Pillath_Master_UniBonn_2024.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1028993/files/Pillath_Master_UniBonn_2024.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1028993
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a University of Bonn
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)142361
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5122
|x 1
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a master
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21