Home > Publications database > Audio Deepfake Detection using the Stationary Wavelet Transform > print |
001 | 1028993 | ||
005 | 20240722202104.0 | ||
024 | 7 | _ | |a 10.34734/FZJ-2024-04917 |2 datacite_doi |
037 | _ | _ | |a FZJ-2024-04917 |
100 | 1 | _ | |a Pillath, Niclas |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Audio Deepfake Detection using the Stationary Wavelet Transform |f - 2024-07-16 |
260 | _ | _ | |c 2024 |
300 | _ | _ | |a 76 |
336 | 7 | _ | |a Output Types/Supervised Student Publication |2 DataCite |
336 | 7 | _ | |a Thesis |0 2 |2 EndNote |
336 | 7 | _ | |a MASTERSTHESIS |2 BibTeX |
336 | 7 | _ | |a masterThesis |2 DRIVER |
336 | 7 | _ | |a Master Thesis |b master |m master |0 PUB:(DE-HGF)19 |s 1721621603_28942 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a SUPERVISED_STUDENT_PUBLICATION |2 ORCID |
502 | _ | _ | |a Masterarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, 2024 |c Rheinische Friedrich-Wilhelms-Universität Bonn |b Masterarbeit |d 2024 |o 2024-07-16 |
520 | _ | _ | |a Recent advances in generative modelling have uncovered new avenues for creative expression, while also raising the potential of malicious misuse. Deepfakes pose significant risks to personal privacy, information integrity and cybersecurity. One possible countermeasure against deepfakes are robust detection models based on deep learning. In the context of audio, convolutional architectures have demonstrated good recognition rates. The raw audio data is usually transformed into a suitable format for convolutional neural networks. Current state-of-the art models employ Fourier or wavelet transforms. This thesis investigates the detection of audio fakes using deep convolutional networks that process stationary wavelet transform inputs. The results show functional detector models, but also reveal limitations of the stationary wavelet transform. |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 5122 - Future Computing & Big Data Systems (POF4-512) |0 G:(DE-HGF)POF4-5122 |c POF4-512 |f POF IV |x 1 |
700 | 1 | _ | |a Suarez, Estela |0 P:(DE-Juel1)142361 |b 1 |e Reviewer |u fzj |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1028993/files/Pillath_Master_UniBonn_2024.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1028993/files/Pillath_Master_UniBonn_2024.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1028993/files/Pillath_Master_UniBonn_2024.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1028993/files/Pillath_Master_UniBonn_2024.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1028993/files/Pillath_Master_UniBonn_2024.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1028993 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a University of Bonn |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)142361 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-512 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Supercomputing & Big Data Infrastructures |9 G:(DE-HGF)POF4-5122 |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a master |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|